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A B S T R A C T   

In the past decades, hundreds of scientific studies have aimed at identifying feeding interventions 
to reduce the production of enteric methane (CH4) from ruminant livestock. However, mitigation 
measures for extensive grassland-based ruminant production systems are largely lacking, or are 
hardly transferred into practice. The aim of this study was to determine the effect size of plant- 
based feeding interventions in cattle and sheep, and to assess the feasibility of implementation 
by calculating the agricultural area required to grow these products. A literature research was 
carried out to identify plant-based feeding interventions, where the effect size was determined by 
at least three publications measuring CH4 in vivo in cattle or sheep, and which could be grown in 
temperate Europe. Using Switzerland as an example for a country with low availability of arable 
land and representative for grass-based ruminant production systems, it was estimated how much 
agricultural land would be required to grow these plant products in sufficient quantities to 
achieve the effects in the entire population of Swiss cattle or sheep. The review revealed that the 
evident effect size of plant-based feeding interventions in cattle reached only in few cases an 
average reduction in CH4 per unit dry matter intake (DMI) of 20%, and often stayed below 10%. 
For sheep, one intervention (Lotus ssp.) exceeded 30% reduction of methanogenesis, the others 
fitted into the results for cattle. The calculations revealed that for many products, the area 
required to supply them to the entire Swiss cattle population would exceed the current national 
area of arable land. For the effective plant-based products identified for sheep, much less agri-
cultural land would be required, due to the small population size. Given the low efficacy of the 
interventions and the vast requirements for land resources to produce the respective plants, the 
cost of implementing them appears to exceed the benefit in greenhouse gas reduction. While 
feeding products of arable cultures appear hardly feasible for CH4 mitigation, implementing 
effective pasture plants in existing grasslands may be more practicable. Despite their comparably 
low efficacy to reduce CH4, including plants rich in plant secondary metabolites into multispecies 
swards would be a feasible approach with comparatively low risks and further benefits. Overall, 
the calculations reveal that the implementation of plant-based CH4 mitigators may largely in-
crease the competition for the use of agricultural land, which is the opposite of intentions with 
grassland-based dairy and meat production, and which affects climate change as well.   
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1. Introduction 

Due to its properties as a greenhouse gas, methane (CH4) enterically produced by ruminant livestock has received increasing in-
terest from the scientific community (Arndt et al., 2022; Beauchemin et al., 2008; Knapp et al., 2014), policy makers and agricultural 
professionals. With the current goals to reduce global warming, much effort has gone into investigating measures to reduce enteric CH4 
emission from ruminants. In the past 40 years, the number of publications on this topic has increased almost exponentially (Fig. 1), and 
the investigated options to reduce enteric CH4 production include feeding strategies, breeding for low emitting animals, increasing 
animal longevity, or dietary supplementation of compounds inhibiting ruminal methanogenesis. Several comprehensive review ar-
ticles have recently been published with the aim to collate viable mitigation methods and to assess their efficacy. One of the most 
recent articles (Arndt et al., 2022) identified several measures which have shown promising results in in vivo trials. Among them are 
strategies such as reducing the amount of fibre in the ruminant’s diet (which is the main substrate for CH4-formation) by decreasing the 
ratio of roughage to concentrates, or the supplementation with synthetic CH4 inhibitors (e.g. 3-NOP), Ionophores (Monensin) or 
Nitrate. While the efficacy of these methods is promising, they are not suitable for all ruminant production systems. In particular, 
extensive grass-based systems with a high emphasis on low input of external nutrients, animal welfare and sustainability (e.g. organic 
farming) require different assessments and solutions (Eugène et al., 2021; Zeitz et al., 2012). Mitigation through reducing dietary 
roughage:concentrate proportions is contrary to targets of grassland-based production (Leiber, 2022). Feed additives or a change of the 
basal ration can be practicable for intensive husbandry systems, where the composition of the diet can be monitored and controlled, 
and where it is offered at a constant rate to each animal. However, implementing additives in pasture-based systems is a challenge, as 
the animals show a higher variability in intake and diet composition and a constant administration of feed additives is much more 
challenging. Furthermore, synthetic feed additives are not allowed in organic agriculture (Varga et al., 2022), and for reasons of 
feed-food competition the use of higher concentrate amounts is criticized for having only limited positive effects on larger scale system 
models (Schader et al., 2015). Herb-based approaches, which often rely on the modulating effects of plant secondary compounds in the 
rumen appear as interesting options, and are frequently assessed and reported (Beauchemin et al., 2008; Khiaosa-Ard and Zebeli, 2013; 
Min et al., 2020). However, some of these approaches may not be viable due to low availability, production costs, unsustainable 
production, or because they are also in competition with human food production due to limited arable land resources. Moreover, 
realistic figures of production conditions for such plants containing effective CH4 mitigating substances have rarely been assessed or 
estimated. Most of the experimental studies available do not ask the question of feasibility of production, nor do large comprehensive 
reviews (Arndt et al., 2022; Min et al., 2020). Thus, proposed measures for mitigation of CH4 on the basis of plant feed additives most 
often lack evidence of practical feasibility. 

The aim of this review was therefore to collate mitigation options through plant-based feeding interventions and to assess their 
effectiveness and the feasibility of implementation, focusing on the area required to grow the product in question. The latter was 
assessed based on the example of Switzerland, where grassland-based animal production is predominant and crucial (Hofstetter et al., 
2014; Leiber et al., 2017) due to the limited availability of arable land. At the same time, the limitations in arable land in Switzerland 
set limits for producing feed additives within the region. Therefore, Switzerland appears to be a model specific for subalpine and 
mountainous regions in Europe, but the basic challenge may be elucidated for other regions short in arable land and with a high 
prevalence of ruminant livestock. By reporting the potential effects together with the agricultural areas required to realize them, this 
approach aims at contributing to the discussion about the urgently needed implementation of decades-long research efforts on the 
topic. 

Fig. 1. Number of scientific publications on CH4 production in ruminants from 1980 to 2022. The data are based on a Web of Science search 
including the search terms ‘methane’ and ‘ruminant’. 
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Table 1 
List of the plant species or process-based interventions, which were assessed in the publications selected for this literature review.  

Plant species Material used for feeding 
experiments 

N studies 
investigating 
product 

References   

Cattle Sheep  

Allium sativum Leaves, bulb, extract 3 3 Kim et al. (2018);Ma et al. (2016);Meale et al. (2014);Panthee et al. (2017);Staerfl et al. (2012);van Zijderveld et al. (2011) 
Astragalus cicer Whole plant 1 0 Stewart et al. (2019) 
Brassica campestris Fodder 0 2 Sun et al. (2014);Sun et al. (2012) 
Brassica napus Seed, oil, expeller, fodder 8 4 Bayat et al. (2018);Beauchemin and McGinn (2006);Brask et al. (2013);Gidlund et al., (2015, 2017);Hellwing et al. (2012);Machmüller et al. (2000); 

Moate et al. (2011);Pinares-Patiño et al. (2016);Sun et al. (2015);Sun et al. (2014);Sun et al. (2012) 
Brassica oleracea Fodder 0 1 Sun et al. (2012) 
Calluna vulgaris Whole plant 0 1 Pérez-Barbería et al. (2020) 
Carthamus 

tinctorius 
Oil 1 0 Bayat et al. (2018) 

Carum carvi Oil 1 0 Lejonklev et al. (2016) 
Castanea sativa Extract 1 0 Aboagye et al. (2019) 
Cichorium intybus Whole plant 0 4 Niderkorn et al. (2019);Sun et al. (2011);Sun et al. (2012);Waghorn et al. (2002) 
Corylus avellana Leaves 1 1 Terranova et al. (2021); S.Wang et al. (2018) 
Eutrema japonicum Oil 1 0 Mohammed et al. (2004) 
Glycine max Beans, meal, oil 5 3 Beck et al. (2019);Boland et al. (2020);Fiorentini et al. (2014);Gidlund et al. (2015);Lima et al. (2019); V.Lind et al. (2020);Mao et al. (2010);Neto 

et al. (2015) 
Hedysarum 

coronarium 
Whole plant 1 1 Waghorn et al. (2002);Woodward et al. (2002) 

Helianthus annuus Oil, seeds 6 1 Bayat et al. (2017);Beauchemin et al. (2007);Chuntrakort et al. (2014);Machmüller et al. (2000);Mata e Silva et al. (2017);McGinn et al. (2004); 
Woodward et al. (2006) 

Hordeum vulgare Seeds 0 1 Moss and Givens (2002) 
Juniperus sp. Oil 1 0 Meale et al. (2014) 
Linum 

usitatissimum 
Seeds, oil, extrudate 14 1 Bayat et al. (2018);Benchaar et al. (2015);Boland et al. (2020);Fiorentini et al. (2014);Focant et al. (2019);Hammond et al. (2015);Hassanat and 

Benchaar (2021);Machmüller et al. (2000);Martin et al., (2008, 2016);Pinares-Patiño, Ulyatt et al. (2003);Poteko et al. (2020);van Gastelen et al. 
(2017);van Zijderveld et al. (2011);Veneman et al. (2015) 

Lotus sp. Whole plant 6 3 Dini et al. (2012);Hammond et al. (2014);Lagrange et al. (2020);Pinares-Patiño, Ulyatt et al. (2003);Stewart et al. (2019);Waghorn et al. (2002); 
Woodward et al., (2001, 2004) 

Lupinus sp. Beans 1 0 Staerfl et al. (2012) 
Medicago sativa Whole plant 6 2 Chaves et al. (2006);Doreau et al. (2014);Gere et al. (2021);Hassanat et al. (2014);McCaughey et al. (1999);Stewart et al. (2019);Waghorn et al. 

(2002);Woodward et al. (2001) 
Morus sp. Extract 0 2 Chen et al. (2015);Ma et al. (2017) 
Onobrychis sp. Whole plant 5 1 Bouchard et al. (2015);Chung et al. (2013);Huyen et al. (2016);Lagrange et al. (2020);Niderkorn et al. (2019);Stewart et al. (2019) 
Origanum vulgare Leaves, extract 7 2 Benchaar (2020);Hristov et al. (2013);Kolling et al. (2018);Lejonklev et al. (2016);Olijhoek et al. (2019);Stefenoni et al. (2021);Tekippe et al. 

(2011); C. J.Wang et al. (2009);Zhang et al. (2021) 
Raphanus sativus Whole plant 0 1 Sun et al. (2014) 
Sanguisorba minor Whole plant 1 0 Stewart et al. (2019) 
Sorghum sp. Whole plant 2 0 de Oliveira et al. (2007);Gere et al. (2021) 
Tagetes erecta Whole plant 1 0 Pineda et al. (2018) 
Trifolium pratense Whole plant 4 3 Gidlund et al. (2017);Hammond et al. (2014);Kasuya and Takahashi (2010);Niderkorn et al. (2015);Niderkorn et al. (2019);van Dorland et al. 

(2007);Waghorn et al. (2002) 
Trifolium repens Whole plant 4 4 Enriquez-Hidalgo et al. (2014);Hammond et al. (2013);Hammond et al. (2014);Lee et al. (2004); V.Lind et al. (2020);Niderkorn et al. (2017);Ulyatt 

et al. (1988);van Dorland et al. (2007) 
Triticum sp. Whole plant silage 1 0 McGeough et al. (2010) 
Vaccinium myrtillus Whole plant 0 1 Pérez-Barbería et al. (2020) 
Vicia faba Beans 1 0 Cherif et al. (2018) 
Vitis vinifera Grape marc 3 0 Caetano et al. (2019);Moate et al., (2014, 2020) 

(continued on next page) 
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Table 1 (continued ) 

Plant species Material used for feeding 
experiments 

N studies 
investigating 
product 

References   

Cattle Sheep  

Zea mays Whole plant, silage, seeds, 
oil 

21 0 Benchaar et al., (2014, 2015);Brask et al. (2013);Dall-Orsoletta et al. (2019);Doreau et al. (2014);Hammond et al. (2015);Hart et al. (2014);Hassanat 
et al., (2013, 2017);Hatew et al. (2015);Hindrichsen et al. (2006);Judy et al. (2019);Lettat et al. (2013);Moate et al. (2011);Na et al. (2013); 
Schwarm et al. (2015);Staerfl et al. (2012);Uddin et al. (2020);van Dorland et al. (2007);van Gastelen et al. (2015)  

Other plant-based products  N studies 
investigating 
product 

References   

Cattle Sheep  

Biochar  2 1 L.Lind et al. (2020);Terry et al. (2019);Winders et al. (2019) 
Brewers grains  2 0 Duthie et al. (2015);Moate et al. (2011) 
Carvacol  1 0 Benchaar (2020) 
DDGS  6 0 Benchaar et al. (2013);Bernier et al. (2012);Garnsworthy et al. (2021);Hoffmann et al. (2021);Judy et al. (2019);McGinn et al. (2009) 
Essential oil blends  5 0 Alemu et al. (2019);Beauchemin and McGinn (2006);Castro-Montoya et al. (2015);Hart et al. (2019);Tomkins et al. (2015) 
High quality pasture or forage  2 5 Archimède et al. (2018);Boadi and Wittenberg (2002);Fraser et al. (2014);Jonker et al., (2014, 2018);Ulyatt et al. (2005);Zhao et al. 

(2017) 
Industry byproducts  1 0 Pang et al. (2018) 
Mixed concentrates supplementation or increase 

in ration  
12 3 Aguerre et al. (2011);Barbero et al. (2015);Chong et al. (2014);Ferris et al. (2020);Hoffmann et al. (2021);Jiao et al. (2014);Liu et al. 

(2013);Lovett et al. (2005);Muñoz et al. (2015);Neto et al. (2015);Patel et al. (2011);Pedreira et al. (2013);Silvestre et al. (2021);van 
Wyngaard et al. (2018); C.Wang et al. (2007) 

Mixed legume forages Hay, 
pasture 

2 0 Boadi and Wittenberg (2002);Dini et al. (2018) 

Multispecies pasture containing clover, plantain, 
chicory and other species  

4 0 Carmona-Flores et al. (2020);Jonker et al. (2019);Loza et al. (2021);Wilson et al. (2020) 

Partial mixed ration  1 0 O’Neill et al. (2012) 
Resveratrol  0 1 Chen et al. (2015) 
Tannin pellets  1 0 Focant et al. (2019)  

Processes N studies 
investigating 
product 

References  

Cattle Sheep  

Decrease maturity of cut forage 7 1 Brask et al. (2013);Chung et al. (2013);Hironaka et al. (1996);Kasuya and Takahashi (2010);Machado et al. (2015);Pang et al. (2018);Warner et al. (2017) 
Decrease pasture maturity 10 2 Barbero et al. (2015);Boland et al. (2013);Congio et al. (2018);Hart et al. (2009);Kidane et al. (2018);Molano and Clark (2008);Muñoz et al. (2016);Pinares-Patiño, 

Baumont et al. (2003);Ramírez-Restrepo et al. (2020);Warner et al., (2016, 2015);Wims et al. (2010) 
Grazing vs conserved forage silage 

or TMR 
2 5 Chong et al. (2014);Dall-Orsoletta et al. (2016);Liu et al. (2013);McDonnell et al. (2016);Pinares-Patiño, Ulyatt et al. (2003);Santoso et al. (2007);Zhao et al. (2016) 

Increase feeding frequency 1 0 Jonker et al. (2016) 
Increase grazing pressure 4 1 Chiavegato et al. (2015);de Souza Filho et al. (2019);DeRamus et al. (2003);McCaughey et al. (1997);Savian et al. (2014) 
Increase intake 6 4 Boadi and Wittenberg (2002);Goopy et al. (2020);Hammond et al. (2014);Hironaka et al. (1996);Jonker et al., (2014, 2016);O’Neill et al. (2012);Sun et al. (2012); 

Warner et al. (2017);Yang et al. (2021) 
Increase maize maturity 3 0 Hatew et al. (2016);McGeough et al. (2010);Nishida et al. (2007) 
Milling or pelleting forage 1 2 Hironaka et al. (1996);Zhao et al., (2016, 2017) 
Nitrogen fertilization of pasture 2 1 Amaral et al. (2016);Warner et al., (2015, 2016) 
Rotational stocking 1 2 McCaughey et al. (1997);Savian et al., (2014, 2018) 
Spatial separation of forages 1 0 Carmona-Flores et al. (2020)  
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2. Material & methods 

2.1. Search strategy, selection of publications, calculation of effect size 

In an in-depth literature research, data was collated on CH4 reduction potential of plant-based feeding interventions and sup-
plements. The initial search was carried out on Web of science, Pubmed and Google Scholar, using the terms “enteric”, “methane”, 
“ruminant” in different combinations. Once a certain feeding intervention was identified, a specific search for further publications was 
carried out by using the search terms “[feeding intervention]”, “methane”, “ruminant”. Furthermore, the references given in relevant 
recent reviews and studies on specific interventions were screened for additional publications. Publications to be included in the 
database were selected based on the following criteria: in vivo CH4 measurements with established methods (respiration chamber, SF6, 
head hoods or boxes, e.g. Greenfeed ®); relevant ruminant grazer-type livestock species, i.e. cattle or sheep; information on diet 
composition and DMI available; investigation of an intervention and a control treatment to allow the calculation of the percentage in 
decrease or increase of CH4 emissions; sound study design (e.g. randomized block, Latin square, cross-over); peer-reviewed publi-
cation. Due to the different study designs of the included publications, some investigated the effect of the potential mitigator in the 
same animals on different diets, while others assessed their effect in different groups of animals, where one would receive a control diet 
and the other the treatment diet. For each of the publications, the control treatment was considered the diet defined as control by the 
respective authors. For stabled animals, this was generally the basal diet without the plant-based additive. In studies where the effect of 
a certain type of concentrates was assessed, the control diet consisted of either the diet without concentrates or the diet with a different 
type of concentrates. In studies where the effect of a certain pasture composition was studied, the control was generally a pasture 
without the studied plants, e.g. pure ryegrass or grass-clover compared to multispecies swards. It has to be noted, that the control and 
basal diet often differed between studies assessing the same plant-based feeding intervention, which probably added to the variability 
in the results. It has previously been shown that absolute enteric CH4 production is highly correlated with DMI (Hammond et al., 2013; 
Niu et al., 2018; van Lingen et al., 2019), therefore, publications which provided absolute emissions per animal without information on 
DMI were excluded. While DMI reported for experiments performed indoors or with animals fed individually is generally accurate, the 
assessment of DMI on pasture is more challenging and less precise (e.g. by using fecal markers or by measuring pre- and post-grazing 
herbage mass). Although all publications included in this review were peer-reviewed, it should be noted that the lack of methods to 
accurately quantify intake in grazing animals may have added some variability to the data. 

Only plant-based interventions were included (exclusion of animal products, synthetic substances, ionophores, micro-organisms, or 
antibiotics). Measures were only included, if they could be implemented in temperate climatic regions, e.g. if there was evidence for 
successful cultivation of the crop or plant species in temperate climatic regions; products based on tropical plants (e.g. coconut, acacia, 
tea, tropical algae) were excluded. Furthermore, studies where animals received a diet with more than 40% concentrates were 
excluded, as this is the upper limit for concentrates in the EU Organic Regulations (European Commission, 2018) and this amount of 
concentrates is seldom exceeded in grass-based systems (Muñoz et al., 2018). Approximately 2000 publications were screened initially 
based on their title and abstract, 369 of which were downloaded for further screening and 183 of which met the inclusion criteria and 
were included in the database. The following information was gathered from all publications: type of intervention, composition of the 
control diet, animal species, number of animals per treatment, experimental design, inclusion rate of the tested feed components 

Fig. 2. Number of publications included in the analysis in this review divided by the country in which the experiments had been conducted.  
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Table 2 
aEvaluation of the amount and area required to supply the entire Swiss sheep and cattle population with selected plant-based feed products previously assessed for their potential to reduce CH4 emissions.  

Product Number of 
studies 
included 

Mean 
reduction 
CH4 per g/kg 
DMI 

±SD Mean 
inclusion rate 
in ration 
reported in 
these studies 

Daily 
required 
amount per 
head 

Annual amount 
required for 
entire Swiss 
population 

Estimated 
annual yield of 
product in CH 

Area required to 
grow product 
for entire Swiss 
population 

Swiss arable or 
grassland* area 
required to grow 
product for entire 
population 

References for yield estimate   

% % DM % DM kg/day DM t/year DM t/ha ha %  

Cattle 
Brassica napus 

(expeller)  
3 1.7 8.1 13.7 2.1 1134613 1.8 620007 157 Agristat (2022) 

Brassica napus 
(oil)  

3 14.8 3.0 5.7 0.9 472832 1.2 404130 102 Agristat (2022) 

Helianthus annuus 
(oil)  

5 19.6 5.4 4.0 0.6 330724 1.2 285107 72 Agristat (2022) 

Linum 
usitatissimum 
(extruded)  

6 10.2 9.6 10.5 1.6 874186 1.2 728488 184 Diepenbrock and Pörksen (1992); 
Mirzaie et al. (2020);Swiss 
granum (2022) 

Linum 
usitatissimum 
(oil)  

8 17.7 16.0 4.1 0.6 338918 0.8 423647 107 Diepenbrock and Pörksen (1992); 
Mirzaie et al. (2020);Swiss 
granum (2022) 

Lotus sp.  6 7.9 13.4 97.5 14.6 8087916 10.0 808792 133 * Bullard and Crawford (1995); 
Elgersma et al. (2015);Hunt et al. 
(2015);MacAdam and Griggs 
(2013);Minneé et al. (2007);Ö 
zpınar et al. (2019) 

Medicago sativa  6 0.0 21.3 78.5 11.8 6509044 13.0 500696 83 * Bundesamt für Landwirtschaft 
(2016);LfL Institut für 
Pflanzenbau und 
Pflanzenzüchtung (2016);Suter 
and Frick (2022) 

Multispecies 
pastures 
containing 
tannin rich 
species  

4 2 18.3 93.3 14.0 7739513 10.0 773951 128 * Grace et al. (2019);Jonker et al. 
(2019);Moloney et al. (2020) 

Onobrychis sp.  5 7.8 6.6 86.0 12.9 7133957 9.0 792662 131 * Agridea (2012);Malisch et al. 
(2017) 

Origanum vulgare 
(leaves)  

5 11.4 19.0 1.6 0.2 134161 3.0 44720 11 Baranauskiene et al. (2013); 
Dordas (2009);Rey et al. (2002); 
Sotiropoulou and Karamanos 
(2010) 

Trifolium pratense  4 2.5 7.4 75.5 11.3 6259096 11.5 544269 90 * Bundesamt für Landwirtschaft 
(2016) 

Trifolium repens  4 2.0 12.8 75.9 11.4 6298971 8.0 787371 130 * Bundesamt für Landwirtschaft 
(2016) 

Vitis vinifera 
(grape marc)  

3 14.4 6.4 26.9 4.0 2229858 1.0 2322768 587 Spinei and Oroian (2021);Taylor 
et al. (2005) 

Zea mays (silage)  14 6.0 5.9 53.4 8.0 4430760 20.0 221538 56 Baux (2013)  

Sheep 

(continued on next page) 
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Table 2 (continued ) 

Product Number of 
studies 
included 

Mean 
reduction 
CH4 per g/kg 
DMI 

±SD Mean 
inclusion rate 
in ration 
reported in 
these studies 

Daily 
required 
amount per 
head 

Annual amount 
required for 
entire Swiss 
population 

Estimated 
annual yield of 
product in CH 

Area required to 
grow product 
for entire Swiss 
population 

Swiss arable or 
grassland* area 
required to grow 
product for entire 
population 

References for yield estimate   

% % DM % DM kg/day DM t/year DM t/ha ha %  

Brassica napus 
(forage)  

3 20.6 8.0 100.0 1.5 188082 5.0 37616 10 Keogh et al. (2012);Sala et al. 
(2008) 

Cichorium intybus  4 5.5 4.4 89.6 1.3 168490 8.0 21061 3 * Lee et al. (2015);Li and Kemp 
(2005) 

Lotus sp.  3 41.0 18.6 100.0 1.5 188082 10.0 18808 3 * Bullard and Crawford (1995); 
Elgersma et al. (2015);Hunt et al. 
(2015);MacAdam and Griggs 
(2013);Minneé et al. (2007);Ö 
zpınar et al. (2019) 

Trifolium pratense  3 3.2 14.2 70.8 1.1 133224 11.5 11585 2 * Bundesamt für Landwirtschaft 
(2016) 

Trifolium repens  4 -10.4 12.4 80.4 1.2 151171 8.0 18896 3 * Bundesamt für Landwirtschaft 
(2016)                   

Estimated 
current amount 
imported into 
CH (t DM / y)  

Increase required in 
import (factor)  

DDGS (in cattle)  6 0.5 12.9 18.3 2.7 1516283 32850  46 Furrer and Grüter (2020)  

a The table only includes products identified during the literature research, for which at least three independent publications were available. The inclusion rate of the product in the animal’s diet is based 
on an average from the publications on which the average reduction in CH4 is based. Required amounts on a population level are calculated based on 1.52 mio head of cattle and 0.34 mio sheep kept in 
Switzerland (CH) in 2020 (Bundesamt für Statistik, 2021). The average yields of the products and the current production in CH were estimated based on references given in the last column. The percentage 
of agricultural area required to grow sufficient product for the entire cattle and sheep population was based on the total arable area in CH for arable cultures (0.39 mio ha), or for pasture plants for the 
current area of pastures and meadows (0.61 mio ha, indicated with *) (Bundesamt für Statistik, 2021). Cells, where no information was available are denoted with NA. 
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(where applicable), CH4 emission in g/kg DMI, and where available in g/kg milk, or in g/kg average daily gain (ADG). In most studies, 
these variables were extracted directly from the results section but in certain cases they were calculated based on the information given 
as CH4 emission in g/d and daily DMI, milk yield or ADG. The data from all publications were checked twice for correctness. 96% of the 
included studies listed in Table 1 were published after the year 2000. Fig. 2 illustrates in which countries the experiments included in 
further analyses where conducted. 

Interventions were assigned to one of two concepts: 1) Product based interventions aimed at changing the composition of the 
animal’s diet by introducing other feedstuffs or changing their ratio, 2) Process based interventions, relying on different management 
processes, such as grazing management, harvest date, or conservation of feedstuffs. 

In order to assess the variability of the effect size of certain interventions, publications evaluating the same intervention were 
grouped. For process-based interventions, publications were grouped based on the nutritional strategy proposed to reduce CH4 pro-
duction (e.g. decreasing forage maturity or increasing grazing pressure). If several experiments were carried out evaluating the same 
intervention within one publication, the effect size was averaged over all trials to create one value per publication. If different 
treatments were investigated within the same publication, effect size was averaged within treatment. 

As the impact of feeding interventions was found to differ between ruminant species (van Gastelen et al., 2019) their effectiveness 
was calculated separately for cattle and sheep. For determination of effectiveness of individual feeding interventions, products or 
processes that had been investigated in the same species in at least three independent publications were considered. The effect size of 
these interventions was expressed in percent reduction (or increase) in CH4 in g/kg DMI, milk or ADG using the following formula:  

([CH4 in g/kg on control diet] – [CH4 in g/kg on intervention]) / [CH4 in g/kg on control diet] *100                                                             

Data were plotted in R Studio (version 3.6.1) using the packages ggplot and beeswarm. 

2.2. Assessing the land-requirements of selected product-based feeding interventions 

For the selected products where three independent publications were available to calculate a mean reduction in CH4 g/kg DMI, the 
area required to grow the product was assessed. Products were not included in this analysis if they were an extract (e.g. an essential oil 
or a specific plant component, where no information was given on the amount of crude plant material required to produce it) or if they 
were unspecific (e.g. increase in feeding mixed concentrates). For the selected products, the average required daily intake (in % DMI) 
was calculated based on the publications assessing their effectiveness as a CH4 inhibitor. In order to assess if these product-based 
interventions could be implemented for the entire population of cattle or sheep kept in Switzerland, the required daily percentage 
in DMI of each product was extrapolated based on an average feed intake per head (15 kg DM/d in cattle, 1.5 kg DM/d in sheep, 
estimated based on Agroscope, 2021; Bundesanstalt für Agrarwirtschaft und Bergbauernfragen, 2023; Steinwidder et al., 2007) and 
animal numbers in 2020: 1.52 Mio head of cattle and 0.34 Mio head of sheep (Bundesamt für Statistik, 2021). Based on these as-
sumptions, it was calculated how much product would be required nationally on an annual basis (t DM per year). To evaluate, if the 
required amount could be met by the current Swiss production, a literature research was carried out to establish a potential average 
annual yield of the crop. All plants included in this research are currently grown in Switzerland, but the number of publications 
reporting national yields of the plants of interest was limited. Therefore, publications reporting yields from other temperate countries 
were also considered. Where several publications on the yield were available, we chose an average value within the range reported in 
these studies. Based on these yield estimates, we calculated how much area would be required to grow this amount of produce. For 

Fig. 3. Histogram of the number of animals used per treatment group in the selected publications.  
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arable cultures, the required area was then set into relation to the current arable area of Switzerland (0.4 mio ha). For cultures, which 
could be established on pasture and which made up the entire ration of the ruminants in the assessed studies, the area was set into 
relation with the current Swiss area consisting of pastures and meadows (0.6 mio ha). All references referring to effectiveness and 
yields of the selected feeding interventions are cited in Table 2. 

3. Results 

3.1. Dataset and effectiveness of feeding interventions 

The literature search resulted in a cattle dataset of 137 publications providing data on CH4 in g/kg DMI (Table 1). Of these 
publications, 79 further provided data on CH4 in g/kg milk, and 24 on CH4 in g/kg ADG. The sheep dataset was based on 47 publi-
cations for CH4 in g/ kg DMI, 2 of which further provided data on CH4 in g/kg ADG (none provided CH4 in g/kg milk). On average, the 
number of animals used within a treatment group to test the effect of an intervention was (mean ± standard deviation) 10 ± 8 in-
dividuals for cattle and 8 ± 4 individuals for sheep (Fig. 3). 

On the control diets, which varied considerably between studies (e.g. TMR with 40% concentrates vs completely grass-based diet), 
the mean CH4 emission (averaged within publications) was 22.6 ± 5.6 g/kg DMI, 17.6 ± 5.6 g/kg milk and 223 ± 138 g/kg ADG for 
cattle. For sheep, the average CH4 emission on the control diet was 21.6 ± 5.2 g/kg DMI and 317 ± 233 g/kg ADG (note that ADG in 
sheep was only available from 2 publications). For cattle, the average reduction in CH4 emissions (over all interventions and publi-
cations) achieved by the intervention treatments compared to the control treatment was 7.4 ± 11.5% for g/kg DMI, 8.5 ± 11.0% for g/ 
kg milk and 13.3 ± 27.1% for g/kg ADG. In sheep, the average reduction in CH4 was 8.2 ± 16.6% in g/kg DMI and 6.4 ± 51.1% in g/ 
kg ADG. The range of the data is illustrated in Fig. 4 A-C. 

Table 1 lists the plant species, products and processes investigated in publications included in the overall database. The most 
common product-based interventions tested in cattle were the replacement of grass-based roughage with legume forages or tannin- 
containing plants, an increase in content of concentrate or maize silage in the ration, supplementation of oilseeds (linseed, rape-
seed, sunflower), plant-based oils, essential oils, or other extracts. In sheep, similar approaches were investigated, although most 
studies focused on forage-based interventions. The most frequently investigated processes were related to pasture and forage man-
agement, such as decreasing forage maturity, or increasing the animals’ intake. For a large proportion of the studies included in the 
literature review, only one or two publications were found to investigate the same feeding intervention in the same ruminant species. 

Effect sizes of selected individual product-based interventions to reduce CH4 in g/kg DMI are shown in Figs. 5 and 6. These figures 
include interventions which had been studied in at least three independent publications in the respective species. In numerous in-
terventions, the effect of the product differed drastically between studies using different or even the same control diets. For eleven out 
of the 17 selected feedstuffs assessed in cattle, there was a discrepancy in the effect, i.e. at least one study reported an increase in CH4 in 
g/kg DMI while at least one other publication reported a decrease. The same was the case for three out of the seven selected feedstuffs 
in sheep. These interventions are those that have datapoints below 0 in Figs. 5 and 6. The effect averaged over the selected studies 
showed a reduction in CH4 in g/kg DMI for 15 of the 17 product-based interventions in cattle and five out of six in sheep. The highest 

Fig. 4. Illustration of the range of all included literature data on CH4 emission by cattle and sheep in g/kg DMI (A), g/kg milk (B) and g/kg ADG (C). 
In each of the selected publications, the emission of the animals was quantified in a control treatment (red) and at least one intervention (blue). Note 
that none of the included publications reported data on milk yield for sheep, and that sheep data in Fig. C are based on two publications only. 
Boxplots indicate median, as well as 25% and 75% quartiles. 
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average effects with a consistent reduction in CH4 in g/kg DMI in cattle were found for the feeding of rape oil (15%), sunflower oil 
(20%), linseed oil (18%) and grape marc (14%). The feeding of linseed and oregano leaves showed an average reduction in CH4 in g/kg 
DMI above 10%, but for both products, there were studies reporting no effect or an increase in CH4 in g/kg DMI. In sheep, the feeding of 
Brassisa napus fodder and Lotus sp. resulted in the highest average reductions in CH4 in g/kg DMI of 21% and 41% respectively. Several 
interventions were investigated in both species: the supplementation or increase in concentrates, the feeding of Lotus sp., Trifolium 
pratense and Trifolium repens. The supplementation of concentrates and the feeding of Trifolium pratense show a similar reduction in CH4 
in g/kg DMI in both species of approximately 10% and 3%, respectively. The reduction in CH4 in g/kg DMI when feeding Lotus sp. was 
considerably higher in sheep than in cattle (41% vs 8%). The effect of feeding T. repens was low in cattle and even adverse in sheep (2% 
vs − 10%). 

For eleven of the selected products for cattle, there were at least three publications available to assess the efficacy with regard to 
CH4 in g/kg milk (Fig. 7A). With regard to the effect on in CH4 in g/kg ADG there were three publications assessing the effect of 
supplementing or increasing the amount of concentrates in the diet (Fig. 7B). The plots indicate that products, which show a reduction 
in CH4 in g/kg DMI in cattle also show a reduction in CH4 in g/kg milk or ADG, except for multispecies pastures, where on average CH4 
in g/kg milk was increased. 

With regard to the selected process-based interventions in cattle (Fig. 8A), two of them showed a reduction of CH4 in g/kg DMI in all 
studies: an increase in grazing pressure and an increase in maize maturity. For sheep (Fig. 8B), an increase in intake was associated 
with a reduction in CH4 in g/kg DMI in all assessed studies. The effect of the remaining processes showed a discrepancy between 

Fig. 5. Effectiveness of product-based feeding interventions in cattle expressed as percentage reduction in CH4 in g/kg DMI. Individual dots 
represent the average effect of an intervention within one study. Boxplots indicate median, as well as 25% and 75% quartiles. The grey dash in-
dicates the mean. 

Fig. 6. Effectiveness of product-based feeding interventions in sheep expressed as percentage reduction in CH4 in g/kg DMI. Individual dots 
represent the average effect of an intervention within one study. Boxplots indicate median, as well as 25% and 75% quartiles. The grey dash in-
dicates the mean. 
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studies. The average effect of an increase in intake was higher and consistent in sheep when compared to cattle (11% vs 2%). In cattle, 
decreasing the maturity of cut forage or pasture showed a reduction in CH4 in g/kg milk (Fig. 9A). Increasing grazing pressure was 
associated with an increase in CH4 in g/kg ADG (Fig. 9B). 

In terms of magnitude, some processes are comparable with the reduction found for certain product-based interventions: with an 
average reduction in CH4 in g/kg DMI of 19%, an increase in grazing pressure shows a similar efficacy in cattle as the supplementation 
with sunflower oil or linseed oil. A 7% reduction achieved by the increase in maize maturity in cattle is comparable to the supple-
mentation with Lotus sp., Onobrychis sp. or maize silage. In sheep, the reduction achieved by an increased intake is lower than the effect 
of the supplementation of Lotus sp. or Brassica napus fodder, but higher than the effect of feeding Cichorium intybius (6%). 

3.2. Land requirements of selected product-based feeding interventions 

The product-based feeding interventions selected for this analysis are listed in Table 2. The required areas in order to supply the 
entire Swiss populations of cattle (dairy and beef) and sheep with amounts sufficient to realize the average effect size in CH4 mitigation 

Fig. 7. Effectiveness of product-based feeding interventions in cattle, where at least three studies were available to assess the effect on CH4 in g/kg 
milk (A) and CH4 in g/kg ADG (B). For sheep neither variable was assessed at least three times for the same product. Individual dots represent the 
average effect of an intervention within one study. Boxplots indicate median, as well as 25% and 75% quartiles. The grey dash indicates the mean. 

Fig. 8. Effectiveness of process-based feeding interventions in cattle (A) and sheep (B) expressed as percentage reduction in CH4 in g/kg DMI (note 
the difference in scale). Individual dots represent the average effect of an intervention within one study. Boxplots indicate median, as well as 25% 
and 75% quartiles. The grey dash indicates the mean. 
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are presented in Table 2. Yields and area estimates should be interpreted with care, as they are (realistic) estimates. For nine in-
terventions, the entire Swiss arable land or grassland would have to be used to grow the product in question, in order to reduce CH4 
emissions by a few percent. For cattle, the product which would require the least area is Origanum (11% of arable land). For sheep, the 
required areas are much smaller (below 10% of the land) than those for cattle, which can be explained by the smaller population and 
the lower DMI. 

4. Discussion 

During the past three decades, a broad spectrum of dietary interventions with various feed plants, often based on effects of specific 
plant metabolites like tannins or essential oils (Khiaosa-Ard and Zebeli, 2013; Vasta et al., 2019) was investigated for their ruminal CH4 
mitigation potential. These plant additives have repeatedly shown the potential to mitigate CH4 production in vitro, but fewer studies 
have investigated their effect in vivo, where their impact on enteric CH4 production is often more variable and less pronounced 
(Jayanegara et al., 2012). However, some options of mitigating enteric CH4 production with forage plants and herbs were identified 
after in vivo investigations, and are referred to in recent reviews (Arndt et al., 2022; Min et al., 2020; Varga et al., 2022). Often, such 
products are claimed to be more natural, since they are not synthetic, and sustainable, since they are (erroneously) considered to be no 
arable crops. Additionally, in the case of herbs or leaves, several potentially beneficial effects on animal welfare and ecosystems are 
attributed to the production and dietary inclusion of such herbal feedstuffs (Gregorini et al., 2017; Leiber et al., 2020). 

However, what has rarely been assessed and defined, are the resources and efforts required to produce the necessary amounts of 
such plants or their extracts in order to realize the desired effects in large (e.g. national) populations of ruminant livestock. Discussion 
about the size of arable surfaces to produce these plant materials is widely lacking, and the gap between experimental evidence and 
practical implementation is still wide. Therefore, proposals based on experimental findings often lack realistic in-practice potential. 
Since land-use is one of the most critical issues of global food production - and the feed-food competition is part of that problem 
(Schader et al., 2015) – it is of particular importance to deliver estimates for the land resources needed for proposed plant-based CH4 
mitigation measures. The land requirements in connection with estimated mitigation effects of proposed dietary interventions would 
provide a basis to assessing their overall suitability and sustainability. 

The present study, based on the example of ruminant production systems in Switzerland, aims at opening the discussion on this 

Fig. 9. Effectiveness of process-based feeding interventions in cattle, where at least three studies were available to assess the effect on CH4 in g/kg 
milk (A) and CH4 in g/kg ADG (B). For sheep neither variable was assessed at least three times for the same product. Individual dots represent the 
average effect of an intervention within one study. Boxplots indicate median, as well as 25% and 75% quartiles. The grey dash indicates the mean. 
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important aspect of CH4 mitigation through feeding interventions. The area of agricultural land in Switzerland and the size of national 
cattle and sheep populations were used to estimate the potential effects and necessary land resources of scientifically proposed dietary 
interventions. With its specificity of a small arable to grassland proportion (38:62) (Bundesamt für Statistik, 2021), Switzerland is not 
representative for intensive agricultural countries in Europe, but it well represents grassland-based ruminant production systems 
(Hofstetter et al., 2014). In any case, the estimates developed in this study highlight that required resources for plant-based CH4 
mitigators are not negligible. 

4.1. Effect sizes of plant-based methane mitigation interventions 

With regard to the large body of literature considering plant-based feed additives with CH4 mitigation potential (Durmic et al., 
2014; Jayanegara et al., 2012; Min et al., 2020; Ugbogu et al., 2019; Varga et al., 2022; Vasta et al., 2019), the number of interventions 
investigated with at least three in vivo studies was rather small. One considerable reason was, that we restricted selection to plants with 
potential to grow in temperate climatic regions, while experimental research also includes various tropical plants (Durmic et al., 2022; 
Soliva et al., 2008; Varga et al., 2022), Furthermore, large parts of the literature evaluating and discussing the topic still rely on in vitro 
data (Durmic et al., 2022; Jayanegara et al., 2012; Varga et al., 2022). 

Of the interventions covered by our selection criteria the averaged effects for CH4 mitigation (related to DM intake) in cattle and 
sheep were around 7–8%, with large standard deviations and a considerable number of studies, where the intervention resulted in an 
increase in CH4. This overall picture is congruent with the review of Vargas et al. (2022) who also found high numbers of studies on 
CH4 mitigators in grassland-based systems with no effect or even increases. The only additives for cattle achieving aspired effects in all 
studies were oils (rapeseed, sunflower, linseed) and grape marc. In sheep, it was fodder rape, trefoil (Lotus sp.), Cichorium intybus, as 
well as the supplementation with mixed concentrates. Notably, with few of these additives the effects were not just consistent but even 
at around 20% (cattle) or 40% (sheep) reduction of CH4 emissions per unit of DMI. However, for most products the effect on CH4 
mitigation varied considerably between studies. This variation may be caused by differences in study design, animal breed, control 
diets or measurement methods between publications. Therefore, the average effect size calculated in this study is a somewhat theo-
retical value, which does not reflect a specific production system. However, this problem reflects the very small basis of available in 
vivo study data. 

4.2. Land requirements of plant-based methane mitigation interventions 

The subsequent objective of this study was to assess, if the daily supplementation of the entire national population of cattle and 
sheep would be feasible based on the area of arable land or, in the case of pasture plants, grassland in Switzerland, considering the 
country as a model for grassland-based production regions (Huber et al., 2022). The calculations shown in Table 2 allow a basic 
assessment of the land which would be required for the growth of the selected plant products intended for methane mitigation. 
Although the yields and areas are based on realistic estimates from literature, the numbers should be interpreted with care. 
Furthermore, climate change is likely to affect the future yields and demand for these products. On one hand, plants thriving under 
warm conditions (e.g. trefoil or sainfoin), may become more suitable for cultivation in Switzerland. On the other hand, increasing 
temperatures and drought may make it increasingly difficult to keep ruminant livestock on lowland pastures, resulting in a reduction in 
animal numbers and consequently the required amounts of plant material. As the effect of climate change on Swiss agriculture is hard 
to predict, making assumptions on yields, required amounts and animal numbers is somewhat speculative. However, the calculations 
shown in Table 2 help to put the efforts which would have to go into methane mitigation through these feeding interventions into 
perspective. They indicate, that several plant-based products assessed in cattle would require an area larger than the total of current 
Swiss arable land or grassland, in order to be available at the amounts necessary to achieve the methane mitigation effects from 
experimental literature. For example, if the most effective product – sunflower oil – would be produced at the required amount within 
the country, its production would require over 2/3rd of the area currently used for the production of arable crops. Other effective 
plant-based oils would require an area even larger and the production of grape marc for all Swiss cattle (which is notably a by-product 
and thus a desirable feed stuff) would require an area almost six times larger than the current national arable area. Even the 
comparably small area required to grow Origanum sp. (10% of arable area) still exceeds the areas currently used to grow e.g. potatoes 
and vegetables (3% of arable land each), sugar beets (4%), or barley (7%) (Bundesamt für Statistik, 2021) – cultures which are of 
importance for the supply of local food and feed. This example illustrates a conflict in land use, in particular if CH4 mitigation is given 
priority over national food security. Even for the comparatively simple example of maize silage, which is already a standard 
component in most dairy rations, the increase in land use would be 5-fold: from 11% of arable land at the moment (Bundesamt für 
Statistik, 2021) to 56% if the inclusion rate of 534 g/kg DM is to be met. 

For sheep, the implementation of the assessed feedstuffs for the national population appears somewhat more feasible, as growing 
them would only require 10% percent of the arable land (for Brassica napus fodder) or 2–3% of grassland. However, considering the 
areas of arable land currently used for food production, these proportions are still substantial. 

The integration of effective pasture plants into the seed mixtures for forage production could be more practical than the supple-
mentation of specific additives or concentrates. The integration of these plants into existing pastures requires no change in land use, 
does thus not create a conflict between CH4 mitigation and food security, and the pasture plants are directly consumed by the animals. 
In contrast to other feed supplements, their administration is less labor intensive. Species like chicory, sainfoin, red clover or trefoil can 
be integrated in existing pastures and meadows to create multispecies swards, which have also been linked with a wide array of 
ecological and agricultural benefits (Bryant et al., 2017; Isbell et al., 2015; Lüscher et al., 2022). However, the dietary inclusion rate of 
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most pasture plants assessed in the studies included in this review was very high (up to 100%). Due to their reduced yield, establishing 
monocultures of the pasture plants in question, e.g. red clover (Trifolium repens or T. pratense), sainfoin (Onobrychis sp.), alfalfa 
(Medicago sativa) or trefoil (Lotus sp.) would require an area exceeding the current Swiss grassland area. Furthermore, seasonal 
availability of the plants would make year-round administration challenging and pure legume pastures would be an unbalanced diet 
for grazer-type ruminant species like cattle and sheep. While the integration of effective pasture plants into existing pastures requires 
comparably little effort, it remains unclear if a small inclusion rate would have any notable effect on CH4 emission. This is reflected by 
the comparatively low efficacy (and its variability) of multispecies swards reported in the studies included in this review. Furthermore, 
when compared to a control diet, feeding on multispecies swards resulted in an average increase in CH4 per kg milk in the studies 
included in this review (Fig. 7A), indicating that a lower feed efficiency of these diets may result in increased emissions to achieve the 
same milk yield. This example illustrates that – beyond efficacy of a mitigator and the land required to produce it – a multitude of 
aspects have to be considered when assessing if a feeding intervention can be realized on farm. 

The proportional land distribution of Switzerland makes the examples discussed above rather drastic, but it generally shows that 
plant-based feed additives for CH4 mitigation would require agricultural areas large enough to evoke debates around land-use, such as 
the challenge of feed-food competition (Schader et al., 2015; Wilkinson, 2011). Since land-use change relates to carbon sequestration 
and release (Yumashev et al., 2022), such measures need to undergo thorough climate impact analyses for the production side, before 
they can be reasonably proposed as measures to mitigate ruminal methanogenesis. Furthermore, the target of grassland-based 
ruminant production, which is particularly tailored for regions with small resources of arable land (Leiber, 2022) becomes obsolete 
if the inhibition of CH4 requires additional agricultural area. 

The effect size of the assessed process-based interventions was highly variable and it was not assessed, which additional efforts 
would be required to realize them in terms of labour, costs, or land-use. However, the results highlight, that certain processes related to 
pasture management and feed production may be as efficient as product-based interventions. For example, an increase in maize 
maturity is as efficient in reducing CH4 per unit DMI as an increase in maize proportions in the ration of cattle (7% vs. 6%). An increase 
in grazing pressure in cattle appears as effective as the supplementation with linseed oil. Both examples highlight, that the 
improvement of management practices in existing systems may be a more sensible way to achieve CH4 mitigation than the imple-
mentation of certain feedstuffs. 

4.3. Methodological aspects 

Besides the effect size and feasibility, the existing data also have to be critically discussed with regard to methodology of the 
research done until now. The results of our literature review illustrate the sheer amount of combinations of feeding interventions and 
control treatments which have been investigated to date. Few studies have replicated previously investigated combinations of product 
and control treatment and if so, the results often vary considerably between such studies. For example, the comparison between alfalfa 
and grass was investigated in at least five studies in cattle, but the results vary from a 40% increase in emissions to a 20% decrease. In 
the case of concentrate supplementation, a reduction in CH4 in kg/DMI ranges from 0% to almost 40%. These examples and the 
variability of effects as displayed in Figs. 5 to 7 illustrate, that the investigation of product-control-combinations require manifold 
independent replications to acquire certainty about the effectiveness of the intervention and knowledge about the variability of the 
effects under real practice conditions. Rather than investigating ever new feed additives and components, research projects verifying 
existing studies would be just as valuable. In particular, because it is rarely possible to investigate more than ten individual animals in 
one study. 

The data further demonstrate, that defining the control diet is as important as the intervention itself. Sainfoin compared to alfalfa 
resulted in hardly any reduction in CH4 in kg/DMI, while sainfoin compared to grass showed a considerable reduction of approx. 15%. 
This should also be considered when suggesting interventions on farm level: compared to a low-quality pasture, feeding white clover 
may decrease emissions, but compared to a nutritious rye-grass pasture, the effect may be negligible. Due to the very low number of 
studies repeating the same intervention under different conditions, it is almost impossible to generalize effects or to allocate them 
systematically to different production conditions. 

The dataset may further be skewed by a positive-results bias, where studies showing the desired effect of the intervention, i.e. a 
reduction in CH4, may be more frequently submitted or published than studies finding no effect or even an increase in CH4. Given the 
variability of the results in the literature dataset, it is likely that the inclusion of each new publication may completely change the 
average effect size of an intervention. 

5. Conclusion 

The present review aimed to relate potential effects of plant-based CH4 inhibitors with the land requirements for implementation. 
Based on the criterion, that for a certain plant-based intervention at least three published in vivo studies were available, the number of 
options was surprisingly small. On average, effect-sizes are below 10% reduction of CH4 per unit of DM intake, with high variation 
between studies, including adverse results. Production of the necessary amounts of such feed additives would require considerable 
amounts of agricultural area, a fact which has been widely neglected, so far. Since land requirements imply climate change threats as 
well, our study results in an urgent call for assessing carbon-cycle effects by production of the debated plant-based CH4 inhibitors. In 
terms of feeding interventions, the integration of plants with inhibitory effects into artificial or natural swards appears to be the most 
practicable solution, which requires no change in land use, bears little risks and has other beneficial effects. 
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Muñoz, C., Hube, S., Morales, J.M., Yan, T., Ungerfeld, E.M., 2015. Effects of concentrate supplementation on enteric methane emissions and milk production of 
grazing dairy cows. Livest. Sci. 175, 37–46. https://doi.org/10.1016/j.livsci.2015.02.001. 
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