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Executive Summary 

The production of animal sourced food significantly contributes to climate change. Cattle, for 

example, produce methane while digesting feed, which is a strong climate gas. In addition, 

manure management and feed production largely contribute to the carbon footprint of meat 

and milk. To mitigate climate impacts innovations are needed on both the supply side, such as 

changes in the production, as well as on demand side, such as reducing meat consumption 

and food waste. In the Re-Livestock project, innovations on the production-side will be 

analysed and how they contribute to a reduced carbon footprint, using the method Life Cycle 

Assessment (LCA). However, to calculate the impact of livestock systems on climate change, 

several methodological challenges exist. In this report, three issues are addressed: 1) choice 

of functional units; 2) accounting for carbon stored in soils and biomass; 3) integrating effects 

of long-lived greenhouse gases (such as carbon) and short-lived greenhouse gases (such as 

methane). For each methodological challenge, the relevant literature, models, guidelines and 

recommendations are reviewed. The findings were then discussed among experts involved in 

the project to draw conclusions and recommendations. 

 

Functional units 

LCAs consists of four phases. In the first phase, the goal and scope of a study are defined, as 

well as a so-called functional unit or reference flow, which is used to relate impacts to. For a 

livestock product system, this can typically be 1 kg meat produced. The choice of functional 

units has been shown to have a strong impact on the outcome of an LCA. Depending on their 

selection, results are for example rather showing the environmental benefits of extensive or 

intensive livestock systems.  

In this report, several recommendations on the choice of functional units have been reviewed, 

such as the ILCD guideline (International Reference Life Cycle Data System) or the guidelines 

published by FAO LEAP (Livestock Environmental Assessment and Performance Partnership) 

for different livestock systems. In addition, a selective literature review on studies applying and 

comparing different functional units, such as mass, area, nutritional value, monetary output, or 

ecosystem services was conducted. Finally, the choice of functional units for systems with 

diverse outputs, such as crop rotations or agroforestry systems, was reviewed.  

The functional units must be selected reflecting the goal and scope of the LCA study. For LCAs 

comparing various products, it is crucial to reflect which functions the different products offer. 

For multifunctional processes, the recommendation of ILCD should be followed, to use one 

functional unit for each function. If large differences in the nutritional values of different 

products exist, the functional unit should ideally mirror this, i.e. a nutritional index should be 

used as functional unit. If livestock systems providing very different levels of provisioning 

ecosystem service (e.g. meat) and non-provisioning ecosystem services (e.g. habitat creation 

and maintenance) are compared, several functional units should be chosen to present LCA 

results. Within the Re-livestock project, comparisons could be done between a baseline and 

an innovation introduced to that baseline system, rather than comparing across different 

livestock systems. This will avoid comparing systems fulfilling very different functions.  
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Accounting for carbon stored in soils and biomass 

In the second phase of an LCA, the life cycle inventory phase, all inputs (e.g. material) and 

emissions (e.g. carbon dioxide) related to a product system are quantified. Here, the changes 

in carbon contained in soils and biomass are calculated. How and if biogenic carbon is 

considered within agricultural LCAs has a large influence on the results. However, no 

harmonized method exists so far on how to quantify changes in LCAs of agricultural systems. 

This is especially relevant for the management of grassland systems or silvo-pastoral systems 

(i.e. introducing trees in pasture land).  

In this report, the general principles and recommendations on how biogenic carbon can be 

assessed in LCAs were reviewed. The IPCC methodology, developed for national greenhouse 

gas inventories, but often used for product LCAs, is shortly presented as well as the 

approaches recommended by FAO LEAP and ILCD. Several models that have been used to 

assess biogenic carbon in LCA are presented and their usefulness for LCA discussed. Also, 

models used for agroforestry systems were reviewed. Finally, exemplary LCA studies are 

summarized that compared different models to assess biogenic carbon or assessed biogenic 

carbon in livestock systems or agroforestry systems.  

When accounting for biogenic carbon in LCA of agricultural systems, both changes in soil 

organic carbon (SOC) as well as in woody biomass can be relevant, while carbon in grass and 

annual crops can be neglected, because it is quickly released again. Generally, the reversibility 

or temporal nature of carbon accumulation in soil or biomass poses a major challenge when 

accounting for biogenic carbon in LCA, which typically has a rather long-time horizon. A 

suitable reference situation needs to be defined, to ensure that only carbon additionally added 

by human management is accounted for. This reference situation can either be the potential 

natural vegetation (e.g. forest), a “no use” scenario under the current land use (e.g. unused 

grassland) or the land management preceding the current management (e.g. degraded 

grassland). The choice of reference situation strongly influences results. Both the reference 

situation as well as the situation under study show temporal dynamics and assumptions on the 

dynamics should be made transparent, and, if possible, only carbon in more stable pools be 

accounted for (e.g. passive pool in IPCC Tier 2). Although the general recommendation of 

ILCD is to not account for carbon stored less than 100 years as a default, a shorter-term 

perspective (e.g. 20 years) could still be relevant to elaborate the option-space of farmers or 

policy-makers. Therefore, a concept is needed to separately show the effect of temporal 

carbon storage on global warming. In general, carbon stored in soils or biomass should be 

reported separately from fossil carbon and results need to be interpreted with caution. In 

addition, an uncertainty or sensitivity analysis should, to the extent possible, be performed on 

SOC changes. 
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Assessing short and long-lived greenhouse gases 

In the third phase of the LCA, the life cycle impact assessment, the environmental relevance 

of all inputs and emissions are calculated. In this phase, the effect of different greenhouse 

gases (such as carbon dioxide, methane or nitrous oxide) is summarized. Typically, a global 

warming potential (GWP) of all gases is calculated, reported as CO2-eqivalents, where the 

warming potential of different gases is accounted for. However, different metrics have been 

proposed on how to integrate the effect of different greenhouse gases, which have a different 

radiative forcing while also showing very different atmospheric lifetimes. Methane, for example, 

a potent greenhouse gas, is degraded in the atmosphere within few decades, while carbon or 

nitrous oxide stay in the atmosphere for centuries. The choice of a metric is particularly relevant 

for product LCAs of ruminants, because the rather short-lived methane stems mainly from 

enteric fermentation, while emissions of long-lived GHG such as CO2 and N2O often result 

from feed production (i.e. application of fertilizer or energy and fuel use or land use change).  

Here, a review was done on the different concepts and metrics to account for the effect of 

different greenhouse gases, within and outside LCA. A special focus was on GWP*, an 

alternative approach of aggregating greenhouse gases proposed a few years ago. The 

usefulness and critique on the concept are reviewed.  

Generally, it is important to account for the different atmospheric lifetimes of GHGs in climate 

impact assessment of food products, especially for ruminant livestock products. It is strongly 

recommended to report greenhouse gas emissions separately by gas, or at least distinguishing 

between short-lived (SLCP) and long-lived climate pollutants (LLCP). There is no single metric 

that captures all the relevant differences in climate impact of different gases and therefore the 

application of multiple metrics (e.g. GWP and GTP) is recommended. To calculate the carbon 

footprint of a product, established metrics such as GWP and global temperature potential 

(GTP) are recommended. Using GWP* for climate footprints is discouraged for two reasons: 

(1) method details around baselines have proven difficult and confusing for many people; and 

(2) GWP* has no advantage in principle over a time-dependent application of GTP, which is a 

more established and widely understood metric. Using a dynamic approach, such as GWP* or 

other simple climate models, can be useful to highlight potential trade-offs between short-term 

and long-term warming effects. In a dynamic approach, climate impact is however not reduced 

to one number, but rather a time series of numbers indicating the climate impact, e.g., as global 

temperature change (GTP) or CO2 warming-equivalents (GWP*).  
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1. Introduction 

Relevance of different greenhouse gases 

Human-induced climate change due to elevated concentrations of greenhouse gases (GHG) 

in the atmosphere has drastic consequences on humans and ecosystems. According to the 

IPCC (2022a), more than 3 billion people “live in contexts that are highly vulnerable to climate 

change” and “a high proportion of species is vulnerable to climate change”. Carbon dioxide 

(CO2) is the most relevant greenhouse gas, which accounts for 75% of the anthropogenic GHG 

emissions, mainly emitted from combustion of fossils fuels, industry and land use change. 

Beside CO2, other gases contribute to global warming, mostly showing a higher warming effect 

per kg gas emitted. To be comparable, emissions of all GHG are typically expressed in kg 

CO2-equivalents (CO2-eq), representing a similar impact on the climate as 1 kg of CO2. 

Methane (CH4) is the second most important GHG and contributes to 18% of anthropogenic 

GHG emissions (in CO2-eq), while nitrous oxides (N2O; 4%) and fluorinated gases (2%) have 

lower shares (IPCC, 2022b). Although the need to limit GHG emissions was internationally 

agreed on in the 1990s, the anthropogenic emission of all these GHGs has considerably 

increased since then (+67% of CO2 emitted from fossil fuels and industry, CH4: +29%, N2O: 

+33%; fluorinated gases: +254%) (IPCC, 2022b). However, even if net emissions would be 

reduced to zero today, the anthropogenic CO2 and N2O emitted in the past will remain in the 

atmosphere for centuries and contribute to the greenhouse effect in the future, while methane 

will degrade within decades and its contribution to the greenhouse effect will decrease over 

time (Lynch, Cain, et al., 2020). To account for the different warming potentials as well as the 

long-term dynamics of short- and long-lived greenhouse gases, a new metric, GWP*, has been 

proposed by Allen et al. (2018). This led to a debate in science, but also in the livestock and 

farming sector, on how to quantify and interpret the effect different greenhouse gases have on 

climate change. 

 

Contribution of livestock systems to climate change 

Food systems account for about 21–37% of annual GHG emissions, with important 

contributions from agriculture (within farm-gate; 9-14%), land use and land use change (e.g. 

agricultural driven deforestation and peatland degradation; 5-14%) and beyond farm gate 

sources (e.g. fertilizer production, food processing, transport, retail, consumption; 5-10%) 

(Mbow et al., 2019). Within the global food system, the livestock sector shows significant 

contribution to GHG emissions, mainly due to non-CO2 gas emissions from enteric 

fermentation, manure left on pasture, manure applied to soils and through manure 

management. About 30% of global methane emissions are related to enteric fermentation, 

mostly from cattle (77% of livestock methane emissions), buffalo (14%) and small ruminants 

(9%). For intensive livestock production systems relevant GHG-emissions also occur beyond 

farm gate: The production of feed and fertilizer, transport and refrigeration can account for 

about 24-32% of total emissions in intensive systems (Mbow et al., 2019). On cropland, 

methane emissions from rice, CO2 emissions from peatland and N2O emissions from fertilizer 

application are the main sources of GHG emissions. 
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Mitigation options from the food and livestock sector 

To limit climate change, reducing net GHG emissions is crucial. For agriculture, mitigation 

concerns the supply side (agricultural production) as well as the demand side (e.g. changing 

diets, reducing food waste) (Mbow et al., 2019). On the supply side, reductions can be 

achieved by lowering emissions (from soils, reducing land use change, and improving land 

and livestock management) or increasing carbon stocks on agricultural land. The latter has 

gained increasing attention in the last years, as global soils contain more than four times more 

carbon than terrestrial biomass. Carbon uptake of soils could be increased by appropriate soil 

management (Stockmann et al., 2013). Grasslands are particularly important, because they 

contain about 20% of the world’s soil organic carbon (SOC) (FAO, 2023a). However, the C 

sequestration potential of restoring degraded grasslands is still not well quantified (L. Liu et al., 

2023). Another mitigation option on agricultural land is increasing both the amount of carbon 

taken up in biomass and soils by establishing agroforestry systems (Feliciano et al., 2018). 

Kay et al (2019) estimated that between 1.4 and 43.4% of the total European agricultural 

greenhouse gas emissions could be offset by agroforestry systems on 8.9% of European 

agricultural land. However, soils and biomass can act as both sources and sinks of carbon, 

and a range of interacting factors such as climate, land management, soil pH, clay content and 

other soil characteristics influence the degree of carbon uptake and release (FAO, 2023a).  

 

Assessing the carbon footprint of innovations in livestock production 

Improving the environmental performance of livestock systems is highly needed. To quantify 

and compare the environmental impacts of livestock products and assess the potential of 

innovations, a life cycle assessment (LCA) is frequently used. LCAs assess impacts along the 

life cycle of products, from extraction of raw material to production, agricultural production, 

processing, transport and disposal of waste. A range of environmental impacts can be 

assessed using LCAs, including climate change, pollution and related effects on ecosystems 

and human health, depletion of resources etc. Impacts are expressed in relation to the function 

of a product system, typically 1 kg of milk or meat produced, the so-called functional unit.  

LCAs consist of four stages (ISO, 2006). In stage 1 the goal and scope of the study are defined. 

In stage 2, the Life Cycle Inventory (LCI) is compiled, where the inputs and emissions of a 

product throughout its life cycle are quantified. The third stage is the life cycle impact 

assessment (LCIA), where the magnitude and significance of the environmental impacts of all 

emissions and inputs are evaluated. Finally, results are interpreted, with regard to the goal and 

scope, and recommendations given and limitations explained.  
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To assess the carbon footprint of innovations in livestock production systems, several 

methodological challenges exist. First, results have been shown to be sensitive to the choice 

of functional units to relate impacts to. As an example, the results in a study exploring the 

environmental impacts of dairy intensification showed either support for or against 

intensification depending on the functional unit chosen (Salou et al., 2017). Second, during the 

life cycle inventory stage, no harmonized method exists on how to quantify changes in soil 

organic carbon of agricultural systems (Goglio et al., 2015). This is especially relevant for the 

management of grassland systems or silvo-pastoral systems (i.e. introducing trees in pasture 

land). Finally, during the life cycle impact assessment stage, it is questioned if the typically 

used metric Global Warming Potential (GWP) is appropriately accounting for climate effects of 

short- and long-lived greenhouse gases. This debate is particularly relevant for LCAs of 

ruminants because the rather short-lived methane stems mainly from enteric fermentation, 

while emissions of long-lived GHG such as CO2 and N2O often result from feed production (i.e. 

application of fertilizer or energy and fuel use or land use change).  
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2. Objectives 

The objective of Task 5.1 was to get an in-depth understanding of and provide potential 

solutions for three main methodological challenges of assessing the global warming potential 

of agricultural and especially livestock systems within life cycle assessment (LCA):  

a) Choice of functional units 

b) Accounting for carbon in soils and biomass in LCA  

c) Integrating effects of long and short-lived GHG 

A clear understanding of these methodological challenges and existing recommendations on 

how to handle them is crucial to select and design methods for assessing the environmental 

impacts and particularly climate impacts of different livestock systems in Task 5.2. It is also a 

prerequisite for finally interpreting climate impacts and for conducting the appropriate 

sensitivity analyses to capture the main methodological uncertainties. 

 

Research questions 

In this task, the following research questions were addressed:  

- Which functional units (FU) have been proposed to assess livestock systems? How 

much does the choice of FU influence results? Which FU can be recommended for 

which types of questions and case studies? 

- Which approaches and recommendations exist to model biogenic carbon in 

agricultural LCAs and how do they differ? Which models have been used to model 

carbon in livestock agroforestry systems and grasslands, and how could those models 

be implemented in LCAs? 

- Can the results derived from the GWP*-metric be used to derive carbon footprints for 

single products and if so, how has this to be done? If not, how are the results to be 

used to communicate about the climate impact of single products and the related 

production processes? 
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3. Methods 

Because this deliverable covers three very diverse topics, experts involved in the task were 

working in three groups to get an in-depth understanding of the methodological challenges, 

summarize these findings and provide conclusions and recommendations on how to address 

these challenges. 

For all topics, existing recommendations were reviewed, such as the guidelines of the FAO 

LEAP (Livestock Environmental Assessment and Performance Partnership, an initiative 

aiming to harmonize methods to assess environmental impact in the livestock sector), ILCD 

(International Reference Life Cycle Data System from the European Commission), or IPCC 

(methodologies from the Intergovernmental Panel on Climate Change). In addition, a selective 

literature review was conducted for each of the topics addressed. Finally, findings were 

discussed among experts involved in the project to draw conclusions and recommendations. 

Additionally, to get a better understanding of the different approaches to assess biogenic 

carbon in LCA, respective models that have been used by researchers involved in the Re-

Livestock project were described in detail.  
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4. Choosing appropriate functional units 

4.1. General recommendations of ILCD 

According to the ILCD Handbook of the European Commission-Joint Research Center (2010), 

the functional units should be defined including (a) the function provided (what), (b) in which 

quantity (how much), (c) for what duration (how long), and (d) to what quality (in what way and 

how well is the function provided). If there are temporal changes in the function provided, these 

shall be explicitly considered and quantified and the use of parameterised data sets is 

recommended. For multifunctional processes, one functional unit or reference flow should be 

given for each function. 

4.2. Recommendation of FAO LEAP regarding livestock 

FAO LEAP provide separate guidance for environmental assessment of different animal supply 

chains (Large ruminants (FAO, 2016a); small ruminants (FAO, 2016c); poultry (FAO, 2016b) 

and pigs (FAO, 2018)) as well as for feed additives (FAO, 2020). An overview of proposed 

functional units is provided in Table 1.  

For milk products, functional units correcting for fat, protein or lactose content are proposed. 

For large ruminants, the recommended functional unit is fat- and protein-corrected milk 

(FPCM), for small ruminants the energy-corrected milk (ECM), which corrects for fat, protein 

and lactose content, is proposed. They are calculated as follows: 

kg FPCM = kg milk × (0.1226 × fat% × 0.0776 × protein% + 0.2534) (IDF, 2015) 

kg ECM   = kg milk × (0.1226 × fat% + 0.0776 × true-protein% + 0.0621 × lactose%) (FAO, 

2016c) 

Table 1. Functional units proposed by FAO LEAO for assessing different livestock products  

Livestock category Main product type Cradle to farm gate Cradle to primary 
processing gate 

Large ruminants Meat Live weight (kg) Meat products (kg)1 
(FAO, 2016a) Draught Power MJ - 
 Milk FPCM (kg) Dairy product(s) with 

specific fat and protein 
content (kg) 

Small ruminants Meat Live weight (kg) Meat products (kg) 
(FAO, 2016c) Fibre Greasy weight (kg) - 
 Milk ECM (kg) Milk product(s) 

Pigs Meat Live weight (kg) Carcass weight (kg) 
(FAO, 2018) Piglets Live weight (kg)  
 Spent sows Live weight (kg)  

Poultry Meat Live weight (kg) Carcass weight (kg) 
(FAO, 2016b) Egg Fresh, shelled weight 

(kg) 
Liquid weight or dry 
(powder) weight (kg) 

                                                      
1 Here, FAO LEAP recommends to specify the edible yield, moisture, fat and protein, which is packaged for 
secondary processing. It may contain small proportion of bones, which are then wasted at consumption stage. 
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4.3. Review of publications comparing functional units 

Many authors have analysed the effect of choosing different functional units for multi-functional 

and complex agricultural or food systems. Here, a selection of studies covering different 

aspects or functions of livestock systems are shortly presented. The section covers studies 

that compare or develop functional units based on mass, area, nutritional value, monetary 

output and ecosystem services.  

 

4.3.1. Mass vs. area 

One of the most commonly used functional units for agricultural LCAs is the mass of produced 

products, such as 1 kg of wheat or 1 kg of meat. Another often applied functional unit is an 

area of land, e.g. 1 ha. According to Basset-Mens and van der Werf (2005), the mass 

represents the function of producing market goods, the area reflects the function of producing 

non-market goods (e.g. environmental services). Many LCA studies therefore report both mass 

and area based functional units. Salou et al. (2017) analysed mass (kg milk) and area based 

functional units (both on- and off farm) for evaluating the environmental impacts of dairy system 

intensification. They show that the choice of functional unit is decisive for the conclusions 

drawn and that mass-based functional units tend to favour intensive systems, which on a local 

scale can have negative environmental impacts. The authors recommend to use both mass-

based and area-based functional units in agricultural LCAs, especially when low-input and 

high-input systems are compared. Ross et al. (2017) proposed to use a functional unit 

combining productivity and land use, i.e. milk yield per hectare, to better capture trade-offs 

between land and production efficiencies for greenhouse gas assessments of dairy systems. 

 

4.3.2. Nutritional value 

In recent years, a stronger focus was made on the function of food to feed people and providing 

healthy diets, looking not only at the mass produced, but also at the nutritional value of food. 

Since nutrition is a complex issue, a variety of indices and functional units have been tested 

and suggested. In a comprehensive review on LCA studies of foods Poore & Nemecek (2018), 

present results per unit of primary nutritional benefit (e.g. protein for meat, sea food and 

legumes, kcal for grains, litre or kg for milk, oil, fruit, vegetable and sugar and serving unit 

for alcoholic drinks, coffee and chocolate). Using human edible protein as the functional unit 

for systems producing different foods, such as dual-purpose cattle producing milk and beef 

has the advantage, that allocation of environmental impacts can be avoided (Letelier et al., 

2022). In a study comparing allocation methods and functional units in different cattle systems 

in Costa Rica, much more human edible protein was provided by milk than meat (Letelier et 

al., 2022). The authors highlight that accounting not only for the amount, but also the quality 

of proteins or other nutrients could help to better reflect the function of food. A protein quality 

index (based on digestibility and content of essential amino acids) was tested as the functional 

unit by Sonesson et al. (2017) in context of different dietary contexts (average Swedish diet, 

lacto-ovo vegetarian diet and low-meat diet). They compared the LCA results of six foods using 

a weighted protein quality index, as well as mass, protein and digestible protein. The authors 
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conclude that using proteins, an important factor in human nutrition, global food security and 

health, as the functional unit of food has the advantage of having relatively accessible data. 

However, other nutrients important for human nutrition are not accounted for and this functional 

unit is not suitable for foods such as vegetables and fruit. In general they conclude that the 

nutritional value of food needs to be assessed in the context of diets, which is very data-

demanding and implementation in LCA might therefore be difficult. Tessari et al. (2016) 

compared environmental impacts of different animal and vegetal foods using mass of edible 

parts, mass of essential amino acids (the building blocks for proteins), or the recommended 

daily allowance of essential amino acids as functional units. They conclude that taking the 

daily allowance of essential amino acids into account, the environmental benefits of crops vs. 

animal foods are less obvious then when using mass based assessments. McAuliffe et al. 

(2018) analysed the effect of different functional units for livestock production systems, 

including the nutritional value of meat. They assessed different functional units, i) based on 

different types of omega-3 poly-unsaturated fatty acids, which show various health benefits, 

and ii) based on different nutrient indices, considering different desirable nutrients (such as 

proteins, omega-3 poly-unsaturated fatty acids, calcium, iron, etc). Applying these different 

functional units to a range of livestock production systems, including cattle, sheep, pigs, and 

poultry, they conclude that results of LCA studies can be dramatically altered when considering 

the differences in nutrient content of meat. A methodology to assess multiple recommended 

nutrients was developed by Saarinen et al. (2017) to either assess different nutrients 

separately as functional units or as a combined nutrient index. They assessed 29 food products 

using these functional units. Looking at separate nutrients were deemed unsuitable for 

sustainability assessments of foods, but useful in situations of scarce nutrients or a deficiency 

of a certain nutrient. A nutrient index, including an index for beneficial nutrients as well as for 

nutrients where intake should be limited was proposed by the authors as a general method to 

take nutritional aspects into account in LCA of foods. 

Increasingly, nutrient density is used as a concept in LCA, especially the Nutrient Rich Food 

(NRF) index family, which reflects dietary guidelines and is considered “robust, versatile and 

validated” (Bianchi et al., 2020). An NRF is flexible to include different desirable and non-

desirable nutrients. It is calculated as the sum of all ratios of desirable nutrients content i in 

foods divided by their dietary reference intakes (DRI) minus the sum of all ratios of non-

desirable nutrients j divided by the maximum recommended intake (MRI):  

 

An NRF11.3, for example, is calculated based on eleven desirable (protein, fibre, vitamins A, 

C, E, D, filate, Ca, Fe, Mg, K) and three non-desirable nutrients (saturated fat, added sugar, 

Na). The choice of nutrients and dietary recommendations can be adapted depending on a 

populations dietary guidelines. However, this means that the index needs to be adapted to a 

population and data are needed for the nutrient content of food products. As nutrition and 

health are complex topics, the interpretation of LCA results based on nutrition indicators could 

require the involvement of nutrition scientists to understand their full implications (Bianchi et 

al., 2020)  
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An overview on metrics and methods to jointly study environmental impact with nutritional 

aspects and/or health dimensions is provided by Green et al. (2020). Health and nutritional 

metrics are evaluated, which are based on nutrient quantity, nutrient diversity or nutrient 

quality. Typical food components considered in different indices are macronutrients (e.g. 

protein, fibre, unsaturated fat), vitamins, minerals (e.g. Calcium or Iron), or non-desired 

nutrients (e.g. saturated fat, added sugar, etc.). Most indices do not account for the importance 

of different nutrients, because there is no scientific agreement on how to weight nutrients (e.g. 

how important are proteins in comparison to carbohydrates). Criteria such as bioavailability, 

nutrient quality or local nutrient deficiencies have used been to weight different nutrients.  

Other authors propose to include the health aspect of diets alongside the impact assessment 

of entire meals, rather than the functional units. Weidema & Stylianou (2020) propose to 

assess beneficial and detrimental nutritional components of food, comparing the food 

composition with thresholds provided by Global Burden of Disease (GBD) studies. A new 

impact indicator DALY Nutritional Index (DANI) is suggested, which calculates the health 

impacts (positive or negative, expressed as DALYs; disability-adjusted life years) per meal. 

Ridoutt (2021) questions if there are benefits of calculating health impacts of food consumption 

and if this should then, for consistency, also be done for other products serving human well-

being such as electricity in hospitals.  

There are several challenges and critiques of using the nutritional value of food as functional 

unit. Regarding nutritional indices for functional units, Ridoutt (2021) states that food is 

multifunctional and does not only provide nutrients, but also satiety and pleasure and has a 

role in social and cultural exchange. In addition, it is not easy to express nutrition in a single 

number. Therefore, Ridoutt (2021) expressed that in many LCA studies it might be more useful 

to just separately report nutritional composition of foods instead of calculating direct health 

impacts or express the impacts per nutritional value. In addition, the nutritional value of food 

can only be assessed in the context of diets, because single food products are not consumed 

in isolation. Therefore, the appropriateness for using nutritional values as functional units in 

product LCAs has been questioned. Assessing LCA of entire diets is however very data-

demanding and implementation of nutritional values in LCA might therefore be difficult 

(Sonesson et al., 2017). In addition, results of nutrient indices tend to be arbitrary and difficult 

to compare, because of the selection of nutrients considered, the way indices are calculated 

and the mostly missing weighting of the importance of nutrients (Green et al., 2020). An 

additional conceptual challenge results from subtracting disqualifying nutrients in nutrient 

indices, which are actually not a function of food. As a result, an LCA of unhealthy food such 

as chocolate could result in a negative functional unit and thus also the related environmental 

impacts, which could be misinterpreted as beneficial outcomes (Saarinen et al., 2017). In 

addition, the non-linearity of the function of nutrition is a challenge, because exceeding the 

daily required amount of e.g. calcium is not adding additional value. Therefore, functional units 

can be “capped”, i.e. no further benefit is assigned to producing more calcium than is needed 

for a region (Green et al., 2020). However, on a micro-scale, e.g. farm level, this approach 

does not work, because supply is not given by one farm and is dependent on the production 

of other farms.  
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4.3.3. Monetary output 

For systems with very diverse outputs, such as agri-photovoltaic or agroforestry systems, a 

monetary functional unit has been proposed. (Leon & Ishihara, 2018) used the summed price 

of produced tomato and generated power as monetary-based functional unit to analyse agri-

photovoltaic systems on tomato greenhouses.  

A study by Grassauer et al. (2022) analysed three functions of dairy farms (food production, 

income generation and providing biodiversity), using a sample of 44 dairy farms. These three 

functions (i.e. outputs) of dairy farms were then used in a data envelopment analysis (DEA) to 

calculate the eco-efficiency, considering the cumulative exergy demand, global warming 

potential, eutrophication potential and aquatic ecotoxicity as “inputs” required to provide the 

functions. The eco-efficiency of each farm showed the possible reduction of excess inputs and 

the desired increase in deficient outputs. The authors conclude that their approach allows to 

identify improvement potential of individual dairy farms in various ways, by increasing one of 

the outputs (food, income, biodiversity) or decreasing one of the four inputs (i.e. environmental 

impacts). For all farms, the amount of purchased concentrate had a strong impact on outputs 

as well as environmental impacts.  

4.3.4. Ecosystem services  

Agroecosystems provide different ecosystem services: provisioning services (e.g. provision of 

food), regulating and maintenance services (e.g. regulating carbon and water flows) and 

cultural services (e.g. recreational value of landscapes). Using the mass or nutritional value of 

food as the functional unit, only the provisioning function of agroecosystems is accounted for. 

Boone et al. (2019) propose to consider all ecosystems services as functions provided by 

agroecosystems, and allocate the impacts among different services. This is the reverse 

approach of other authors, which propose a cause-effect chain in which damages to 

ecosystem services are either assessed as midpoint (e.g. erosion resistance potential [t/ha/yr]) 

or endpoint indicators (ecosystem quality; Koellner et al., 2013) or as an own area of protection 

(Hardaker et al., 2022) in the life cycle impact assessment.  

Midpoint indicators focus on single environmental problems, for example climate change or 

acidification. Endpoint indicators show the environmental impact on three higher aggregation 

levels, being the 1) effect on human health, 2) biodiversity and 3) resource scarcity. 

A selection of studies has applied the approach “Economic allocation including ecosystem 

services” (Ripoll-Bosch et al., 2013), by calculating the total economic value of different 

services (e.g. income generated by meat and milk and by direct payments for ecosystem 

services and allocating the impact to the different outputs (Bragaglio et al., 2020; Ripoll-Bosch 

et al., 2013). Because it is not always straightforward to link payment schemes with ecosystem 

services, von Greyerz et al. (2023) tested different allocation procedures. All studies found 

substantially lower GHGs associated with (extensive) livestock systems, when accounting for 

the non-provisioning ecosystem services.  
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4.3.5. Agroforestry systems and crop rotations 

Agroforestry systems are by definition multi-functional and provide different outputs. A 

review of LCA studies of agroforestry systems showed that the majority used mass of food 

products as functional units, but also area, economic units, energy or composite units were 

used (Quevedo-Cascante et al., 2023).  

Goglio et al. (2018) discuss how to appropriately assess entire cropping systems, with 

multiple crops grown in sequence or simultaneously (intercropping or agroforestry), and where 

strong effects of previous crops on the performance of the subsequent crops occur. For system 

LCA (i.e. an assessment or comparison of production systems, focussing on better 

understanding the mechanisms behind environmental impacts) they recommend to apply a 

cropping system approach. For product LCA, they propose different approaches to attribute 

environmental burdens to different outputs of cropping systems. For management 

interventions, resources and emissions, a classification is proposed based on the causal 

relationship to the cultivation of single crops. Three classes are suggested for inputs or 

emissions (1) mainly attributed to one crop (e.g. seed inputs), (2) allocated to different crops 

using specific criteria, such as fertilizer demand, or (3) allocated using generic criteria, such 

as cereal unit or crop rotation. Cereal unit is the metabolizable energy content of each 

agricultural product, normalized by the respective content of the reference crop barley. The 

crop rotation approach calculates the environmental burdens of entire crop rotations in the 

inventory phase and then allocates impacts to single crops based on biophysical, cereal unit, 

mass, energy, or economic relationships. Alternatively, crops can be assessed separately from 

the crop rotation, which is actually most commonly done in LCAs. However, when assessed 

separately, the time variability across crops is not accounted for and there is a high risk of 

double counting effects such as GHG emissions, nutrient dynamic and biodiversity impacts. 
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5. Accounting for biogenic carbon in LCA 

5.1. Standard accounting methods and international 
recommendations  

5.1.1. Biogenic carbon in LCA: General principles 

In agricultural systems, carbon is stored in different pools, such as soils, dead organic matter 

(dead wood and litter) and biomass (above- and belowground). Management practices, such 

as reduced tillage, crop residue management, use of organic fertilizers, or planting of woody 

vegetation can affect the amount of carbon contained in these pools. When a new 

management practice is introduced, the carbon of the different pools changes at a high rate, 

particularly soil organic carbon (SOC), the main pool where carbon is stored in agricultural 

systems. The rate of change slows down over time until a new equilibrium is reached, where 

carbon content varies mainly depending on climate variability, and without showing a clear 

trend (Goglio et al., 2015). However, the dynamics to reach a steady-state are complex, 

especially for soil organic carbon. Baveye et al. (2023) highlight the difference between carbon 

storage (short-term retention of carbon in soils after application of organic matter) and carbon 

sequestration (long-term retention of carbon in soils). They illustrate that a substantial portion 

of the soil carbon input in one year is rapidly lost within the next 20 years. In addition, the 

storage capacity of carbon in soils is finite (Wang et al., 2023) and thus depends on how much 

carbon is already contained in soils. 

If and how the changes in carbon stored in these pools should be accounted for in LCA thus 

strongly depends on temporal horizons considered. Following IPCC, typical time horizons used 

in LCA to account for climate impacts are 20, 100 and 500 years, with 100 years being most 

commonly used. Carbon absorbed in biomass (especially in crops and animals, but also trees) 

is typically considered as carbon-neutral, because it is re-released within a 100 year time 

frame. Exceptions exist, for example for wood used in buildings (IDF, 2015). How to account 

for the benefits of temporarily removing carbon from the atmosphere in woody vegetation of 

forests (Brandão et al., 2013) or agroforestry systems (Quevedo-Cascante et al., 2023) is 

being debated.  

 

Recommendations from ILCD and environmental footprint 

In LCA, a distinction is made between changes in biogenic carbon from land management and 

from land use change. While changes in biogenic carbon in biomass and soil due to land use 

change (e.g. deforestation) are typically accounted for, changes in soil organic carbon due to 

changes in land management are often not assessed (however with some exceptions e.g. 

Moberg et al. (2019) and Hammar et al. (2022)). 
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According to the ILCD Handbook (European Commission-Joint Research Center, 2010), to 

account for changes in soil organic carbon due to land use change, the most recent IPCC 

CO2 emission factors should be used, but if available, more accurate and specific data can be 

used. To allocate the impact of land use change to subsequent land uses (e.g. crops), ILCD 

separates between changes happening over longer periods (e.g. slower SOC changes) and 

changes within the first year after conversion (e.g. biomass burning). For slower changes, a 

new equilibrium should be assumed after 20 years as default, assuming that 90% of losses or 

gain happen within this time frame. Linear changes can be assumed for simplicity. Using a 

triangular allocation function, higher impacts are given to crops directly planted after land use 

change and lower impacts for the crop planted 19 years after the transformation. For carbon 

stock changes happening within a year after land transformation, the carbon emission is 

allocated evenly to all crops within the subsequent 20 years. 

According to ILCD, the temporary storage of carbon (i.e. shorter than 100 years) shall not 

be considered per default. However, changes can be considered if this is explicitly required for 

meeting the goal of the study. In that case, they recommend to report temporary carbon 

storage or delayed emissions (i.e. within less than 100 years) in separate inventory flows called 

“Correction flow for delayed emission of biogenic carbon dioxide (within first 100 years)”. These 

correction flows are calculated as the amount of C stored multiplied by the years of storage. 

These correction flows are then multiplied by -0.01. Storing 1 kg of C in a wood product for 20 

years thus results in a carbon sequestration of -0.2 kg C, if the delayed emissions are 

accounted for in the LCA (assessing impacts using GWP100). Although not explicitly stated, 

this approach might also be applicable for establishing woody vegetation within 

agroecosystems (e.g. agroforestry) or temporarily increasing soil organic carbon due to land 

management.  

ILCD states, that “only the net interventions related to human land management activities shall 

be inventoried”. Emissions that would occur also without management (“unused site”) shall not 

be inventoried. For most GHG emissions and carbon storage in soils, only changes due to 

human management should thus be assessed and not the total carbon stored in soils (when 

part of it would be there without interventions). As a reference situation, “no use” shall be 

assumed. 

The guide on environmental footprints (Fazio et al., 2020) also requires that carbon 

emissions from land use and land use change are reported. However, SOC uptake due to 

changes in agricultural management shall not be included in the modelling, but can be reported 

separately. 

 

Time horizons 

Temporarily removing carbon from the atmosphere or delaying GHG emissions could 

contribute to lower the global temperature peak (Matthews et al., 2023). So far, no consensus 

exists on how to account for such temporal storage. In an expert workshop, Brandão et al. 

(2013) compared six approaches to account for temporal storage: one with a fixed GWP, used 

in conventional LCAs, which does not account for any benefits of temporal storage, and five 

methods that account for temporal storage in different ways (Moura-Costa method, Lashof 
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method, PAS 2050 method, dynamic LCA method and ILCD method). The authors did not 

reach consensus on whether temporal storage of carbon should be accounted for in LCA and 

if so, with which method. They conclude that value choices are involved when choosing how 

to account for temporal carbon removal, and that choices should be made explicit and 

transparent. Instead of discounting for delayed emissions, Kendall (2012) proposed to directly 

calculate “time adjusted global warming potentials” (TAWPs). For one kg CO2 emitted in 10 

years in the future, a CO2-equivalent of a current emission is calculated. For example, based 

on a 100 year time perspective, a 10 year delayed emission results in 0.93 kg CO2-today, 

whereas with a 20 years perspective, a 10 year delayed emission corresponds to 0.58 CO2-

today. Other authors propose to use time-dependent modelling of SOC, where yearly fluxes of 

greenhouse gases are calculated and the temperature response over time is assessed to 

reflect the impact on climate change (e.g., Hammar et al., 2022).  

 

LCA land use assessment framework and reference situations 

For assessing the impacts of land use change on ecosystem quality, the land use assessment 

framework (Koellner et al., 2013; Milà i Canals et al., 2007) is usually applied in LCA (Figure 

1). This framework can also be applied to assess changes in soil organic carbon (Müller-Wenk 

& Brandão, 2010). A reference situation is used to evaluate the impacts of land use and land 

use change. A distinction is made between effects of changing land use or management 

practices (referred to as land transformation impacts) and impacts of maintaining the current 

land use or management (referred to as land occupation impacts). Figure 1 shows two 

simplified situations of changes in SOC. The reference situation is at steady-state and positive 

(A) or negative (B) changes to SOC occur after the land management is changed, until it 

reaches a new steady-state under the new land management (occupation situation). As soon 

as the human activity stops, SOC levels slowly return to the reference situation. The impact of 

land occupation is given as the difference between the altered and reference situation, 

multiplied by time and area of the occupation. Transformation is calculated as the difference 

between SOC under land management and reference situation is calculated, multiplied by half 

the regeneration time (time used until SOC reaches the level of the reference situation, after 

land is not used anymore (dashed triangle). 

Accounting for SOC under the land use assessment framework thus implies, that impacts are 

calculated as SOC change multiplied by time and area, and that a distinction is made between 

land transformation and occupation. In addition, steady-state assumptions are typically used 

for both reference and land management situation.  

Following this approach, results are highly sensitive to the selection of the reference situation. 

For example, maintaining no-till cropland might show reduced SOC levels (C emissions) when 

using as a reference the potential natural vegetation in regions with natural forest cover, , while 

using tilled cropland as a reference might show increases in SOC. 



 

22 

  

Deliverable 16 
Methodological development report for 

C-seq. and GHG metrics in LCA 

 

Figure 1. LCA land use assessment framework (Koellner et al., 2013) to assess changes in soil organic carbon 
stocks (SOC) due to land management. (A): reference situation is at a steady-state, the introduction of a new land 
management (e.g. increased yearly input of C) slowly increases SOC, until it reaches a new equilibrium. As soon 
as the management is changed again (e.g. no additional yearly input of C) the SOC is rather quickly returning to 
the reference situation. (B) introducing a new land management (e.g. ploughing the land) quickly releases SOC, 
until it reaches a new steady state. As soon as the land management is stopped (e.g. land is not ploughed any 
more), SOC slowly increases back to the reference situation. Filled areas: SOC changes due to land occupation 
(maintaining land management); dashed areas: SOC changes due to land management change. Green: 
increased SOC, orange: decreased SOC.  

Conceptually, other situations are possible, where no steady-state is prevalentFigure 2. Figure 

2 shows two alternative situations. In situation A, degrading SOC-levels are assumed (e.g. due 

to warming climate) and with a change in land management, the SOC can again be increased. 

In situation B, a new steady state is calculated with a time horizon of 100 years, but the new 

steady state is highly dependent on the assumptions on the starting point at time = 0 (Joensuu 

et al., 2021). 
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Figure 2. Changes of SOC over time of reference situation (A) or land management situation (B). (A): the 
reference situation is not at a steady-state, SOC is lost over time (e.g. due to warming climate). With the 
introduction of a new land management, the SOC is increased. (B) Assessment of changes in SOC comparing 
SOC at beginning of modelling period to SOC stocks after 100 years for two different reference situations (starting 
points) (adapted from Joensuu et al., 2021). Green: increased SOC, orange: decreased SOC.  

 

Allocation of impacts 

Within an LCA, SOC changes due to land use change, happening over a longer or shorter time 

period, finally need to be allocated to crop or animal production, disregarding the approach on 

how they are assessed. For land use change e.g. from forest to crop land, impacts are typically 

allocated to the products of this land for the first 20 years. The amount of carbon lost due to 

land use change is thereby distributed over the crops grown within the first 20 years, thereafter 

no impact is assigned to crops. A triangular distribution, giving more weight to crops grown in 

the first years after land use change, is proposed by ILCD, while IPCC uses a uniform 

distribution (Bessou et al., 2020).  

A different approach is presented by Pendrill et al. (2019), which assessed drivers of 

deforestation and quantified the deforestation “embodied” in production and trade of 

agricultural and forestry commodities. They analysed the commodity groups per country 

associated with deforestation as well as the share of deforestation attributed to exported 

commodities.  
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Review on accounting SOC changes in LCA 

A review on how changes in soil organic carbon due to land management and land use change 

is assessed in LCA was performed by Goglio et al. (2015). They identified four different 

methods: emission factors, simple C models, dynamic crop-climate-soil models and 

observations. While emission factors (e.g. IPCC Tier I factors) are easy to apply in LCAs, they 

have a low level of certainty. Dynamic crop-climate-soil models, such as DAYCENT; DNDC, 

CERES-EGC, CropSyst, are process-based models that ensure maintaining the mass balance 

for C, N, and water in agro-ecosystems. They have a higher certainty but are not easy to apply. 

Simple C models (such as C-Tool, RothC, ICBM), consider soil C dynamics but do not model 

crop production and the input of carbon needs to be specified. These models are of 

intermediate applicability and certainty. While Goglio et al. (2015) identified LCA studies 

applying all three types of models for assessing soil C changes due to land management, only 

one study was identified that measured soil C. For land use change, the reviewed studies 

covered all four methods. In general, about 20% of the reviewed studies assessed both soil C 

changes due to land use change and land management change and around 40% each covered 

either only land use or only land management. 

Goglio et al. (2015) conclude that a “compromise between accuracy and completeness in LCA 

methods is necessary” and that currently most LCAs considering land use change only do this 

in a coarse manner due to limited data and available methodology in specific countries.  

They provide the following recommendations: 

• Apply a method consistent with the objective of the study (e.g. apply a site-specific 

assessment if a site-specific case study is assessed). 

• The choice of methods should depend on data availability and user expertise. 

Generally, they suggest an order of preference: measurements (only for small-scale 

site-specific assessments) > dynamic crop-climate-soil models > simple C models > 

IPCC Tier 2 methodology > IPCC Tier 1 emission factor. 

• For large-scale assessments, a method should be selected which is dependent on soil 

and climate variability and the timing of the emission should be considered.  

• A time horizon of at least 20 years should be considered, but a longer time horizon (e.g. 

30-100 years) would be preferable for example in cool climates with slower dynamics. 

• If indirect land use change could be relevant (e.g. increasing the use of existing 

croplands for producing animal feed or biofuel, leading to deforestation elsewhere to 

produce crops for direct human consumption), at least a sensitivity analysis should be 

performed on it. 

• The biogenic carbon flows resulting from land use and land management change 

should be reported separately from fossil carbon flows. 
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5.1.2. IPCC methodology 

The intergovernmental panel on climate change (IPCC) has proposed guidance on how to 

calculate national greenhouse gas inventories (IPCC, 2006). The methodology has been 

revised and developed over the years, and the most recent methodological update has been 

published in 2019. IPCC methodology is a standard methodology applied in LCA. 

IPCC (2019) distinguishes between three carbon pools (which are again split into sub-pools): 

biomass (above- and below-ground), dead organic matter (litter and dead wood) and soils 

(mineral or organic). Carbon fluxes for all managed land should be assessed (managed land 

principle), but not for unmanaged (natural) land. Generally, according to IPCC, emissions and 

removals of carbon should be reported separately for six land use categories: Forest Land, 

Cropland, Grassland, Wetlands, Settlements, and Other Land. For complex land uses, such 

as agroforestry systems, emissions and removals of carbon needs to be reported under one 

of these six categories. It depends on the type of agroforestry and the national definitions of 

forests, under which category agroforestry should be reported. Different methods apply, if land 

is converted from one category to another (land use change) or if land is remaining in the same 

category (and only the land management optionally changes, e.g. tillage practices). IPCC 

provides guidance on different aspects relevant for the livestock sector: CO2 emissions and 

removals resulting from C stock changes in biomass, dead organic matter and mineral soils, 

GHG emissions from fire, N2O emissions from all soils; CO2 emissions associated with liming 

and urea application, CH4 emissions from flooded land, C stock change associated with 

harvested wood products, as well as CH4 emission from enteric fermentation and CH4 and N2O 

emissions from manure management systems.  

IPCC methodology follows a tiered-structure:  

- Tier 1: simplest methods to use, equations and default parameter values are provided 

directly by IPCC. 

- Tier 2 same methodological approach as Tier 1, but using country- or region-specific 

data, higher temporal and spatial resolution. 

- Tier 3, higher order methods are used (e.g. process-based models), which provide 

estimates of greater certainty than lower tiers, but require high-resolution data or 

repeated measurements and may also include interannual variability. Here, often 

country-specific methodologies can be applied. 

Generally, moving to higher tiers reduces uncertainty, but increases complexity and data 

requirements. A combination of tiers can be used for assessing different aspects, depending 

on the data availability. Within the same Tier, often different methodologies are proposed, 

depending on the data availability. 

 

No land use change 

Table 2 gives an overview on the different methods proposed for assessing biogenic carbon 

stock changes for land remaining in the same land use, following the different tiers. Some 

pools are considered as stable in Tier 1 approach without a change in land use and are 

therefore not considered in the calculations. 
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IPCC proposes two main methods to account for changes in C stocks in different carbon pools: 

Gain-Loss method and Stock difference method. The Gain-Loss method accounts for all 

processes that bring about changes in a pool within a year. Gains (increase in biomass or 

transfer of carbon from another pool) are summed and losses (decay, burning or transfer to 

other pools) are subtracted. It is the default method for Tier 1, but can also be used for Tier 2 

and 3 with refinements. The Stock-Difference Method calculates the annual average 

difference between estimates at two points in time.  

Table 2 Overview on different biogenic C stocks and IPCC-assessment methods (IPCC, 2019) for different tiers 
for land remaining in the same land use category (simplified presentation, additional options might be available). 
Agroforestry needs to be assessed under one of these three categories, depending on national definitions. The 
equations in the table refer to the original IPCC report. 

 Cropland Grassland Forest 

Biomass Annual crops: not 

considered (assumed 

stable) 

Tier 1: not considered 

(assumed stable) 

Tier 2 and 3: Gain-Loss or 

Stock difference 

Changes are assessed 

Above-

ground 

Perennial woody crops:  

Tier 1: Gain-Loss 

Method 

Tier 2: Gain-Loss or 

Stock difference  

See above  Tier 1-3: Gain-loss 

Tier 2-3: Stock 

difference  

 

Below-

ground 

Perennial woody crops:  

Tier 1: not considered 

(assumed stable) 

Tier 2: measurement of 

root-to-shoot-ratio  

See above Tier 1 Gain-Loss: 

Below-ground biomass 

estimated with ratio 

(Equation 2.10) or with 

biomass conversion 

and expansion factors 

(BCEFI ) 

Dead organic 

matter 

(same 

methods for 

dead wood 

and litter 

proposed) 

Tier 1: not considered 

(assumed stable) 

Tier 2: Gain-Loss or 

Stock difference 

calculated separately for 

dead wood and litter 

Tier 1: not considered 

(assumed stable) 

Tier 2: Gain-Loss or Stock 

difference 

Tier 1: not considered 

(assumed stable) 

Tier 2: Gain-Loss or 

Stock difference 

Soil organic carbon  

Mineral 

soils 

Tier 1: stock change 

factor (Eq. 2.25) 

Tier 2: Steady state 

method 

Tier 1: stock change factor 

(Eq. 2.25) 

Tier 2: Eq. 2.25 with country 

specific stock change 

factors 

Tier 1: not considered 

(assumed stable), Tier 

2: Eq. 2.25 with country 

specific stock change 

factors 

Organic 

soils 

Tier 1-2: annual carbon 

loss from drained soils 

(Eq. 2.26) 

Tier 1-2: annual carbon loss 

from drained soils (Eq. 

2.26) 

Tier 1-2: annual carbon 

loss from drained soils 

(Eq. 2.26) 
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Biomass 

Changes in carbon in above-ground biomass are only considered for woody vegetation and 

are not accounted for in arable crops and grasslands. The gain loss method can be applied for 

Tier 1 – 3 and the stock-difference method for Tier 2 and 3. For Tier 1, default estimates of 

biomass stocks, growth rates and losses are provided for major climatic regions and 

agricultural systems. For agroforestry in temperate climates, default values are given for 

hedgerows, silvo-arable and silvo-pastural systems, and for some systems different values for 

cool and warm temperate and different continents is provided by IPCC. In addition, default 

values are provided for temperate, perennial monocultures of olives, orchards (e.g. apple), 

vineyards and short rotation coppice.  

In Tier 1, changes in below-ground biomass of cropland and grassland are not considered. 

For forests, the below-ground biomass is estimated with a below-ground to above-ground 

biomass ratio (root-shoot ratio). In Tier 2, default values derived from measurements are 

provided for woody cropland and grassland, but they are highly dependent on species and 

communities considered and show wide ranges and the use of region and species-specific 

values is recommended. For forests, country specific above-ground to below-ground ratios 

should be used in Tier 2.  

 

Dead Organic Matter 

For Tier 1, changes in dead organic matter are not considered. For Tier 2 and 3, both the Gain 

loss and the Stock-Difference method can be applied. To estimate the carbon content in the 

dead organic matter, a default value of 50% C (calculated from dry matter) for dead wood and 

40% C for litter can be applied.  

Soil organic carbon 

For assessing changes in soil organic carbon, different approaches and data are 

recommended for mineral soil and organic soils. For mineral soils under forests, no change 

in SOC is assumed under Tier 1. For cropland and grassland, as well as for forest under Tier 

2, a “stock change factor” method and “steady state” method are proposed. The stock change 

factor method calculates the change in SOC in the top 30 cm after a management change 

compared to a reference condition. It is based on the assumptions that a stable SOC content 

(equilibrium) is reached after 20 years; and that the transition to the new equilibrium SOC 

occurs linearly. The new equilibrium SOC is depending on soil, climate, land-use and 

management practices. So-called “stock change factors” are provided, depending on climate 

and soil type, which reflect the impact of land use, land management and C inputs to soils. 

The steady state method can be applied to cropland and distinguishes three C pools in the 

top 0-30cm layer of the soil with different turnover time: active (month – years), slow (decades) 

and passive (centuries) pools. It estimates C stock changes from combinations of tillage and 

C-input management activities under conditions defined by the soil texture and the weather. It 

is based on the CENTURY ecosystem model, which calculates steady-state solutions for the 

three SOC sub-pools (Ogle et al., 2012; Parton et al., 1987). 
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For organic soils, an annual emission factor is assigned that estimates the carbon lost 

following a drainage. 

 

Land use change 

For land, which is converted from one category to another, the assessment of biogenic 

carbon changes is different than for land remaining in the same category. An overview of 

approaches is given in Table 3.  

For the re-establishment of a new land use type after conversion (biomass, soil and litter), 20 

years are assumed as a default, but other regeneration times can be used.  

 

Table 3. Overview on different biogenic C-stocks and IPCC-assessment methods for different tiers for land which 
is converted to a new land use category. A conversion to agroforestry needs to be assessed under one of the 
listed land use categories, depending on national definitions If agroforestry (defined as cropland) is established on 
cropland, no land use change is assumed. The equations in the table refer to the original IPCC report. 

  Land converted to  

 cropland grassland forest 

Biomass  Is accounted for 

Tier 1: Eq. 2.15, 2.16; 

Tier 2: Gain-Loss or 

Stock Difference 

Is accounted for 

Tier 1: gain-loss 

(Eq. 2.7), Tier 2: 

Eq. 2.15 

Above-ground Tier 1: Eq. 2.15, Tier 2: 

Gain-Loss or Stock 

Difference 

See above See above 

Below-ground not accounted for on 

cropland 

See above See above 

Dead organic matter 

(same methods for dead 

wood and litter proposed) 

Tier 1: Assumed zero 

after conversion, Tier 

2: gain-loss or stock-

difference 

Tier 1: Assumed zero 

after conversion, Tier 2: 

gain-loss or stock-

difference 

Tier 1: linear 

increase 

assumed, Tier 2:  

gain-loss or 

stock-difference 

Soil organic carbon    

Mineral soils Tier 1 & 2: stock 

change factor (Eq. 

2.25) 

Tier 1 & 2: stock 

change factor (Eq. 

2.25) 

Tier 1 & 2: stock 

change factor 

(Eq. 2.25) 

Organic soils Tier 1 & 2: annual C 

loss after drainage (Eq. 

2.26) 

Tier 1 & 2: annual C 

loss after drainage (Eq. 

2.26) 

Tier 1 & 2: annual 

C loss after 

drainage (Eq. 

2.26) 

 

 



 

29 

  

Deliverable 16 
Methodological development report for 

C-seq. and GHG metrics in LCA 

Biomass 

Land use can change slowly (e.g. reforestation of crop- or grassland by natural or artificial 

regeneration) or fast (e.g. deforestation and establishing crop- or grassland). For fast 

conversions, two-phases are considered: an initial abrupt change in biomass estimated for the 

year of conversion and a gradual loss or gain of biomass until a new steady-state is reached. 

For the initial change, biomass stocks before and after the conversion, as well as the carbon 

fraction of the biomass are considered. For annual changes thereafter, annual increases and 

decreases in carbon stocks in biomass are assessed.  

In Tier 1, it is assumed that the land is cleared of all vegetation before another land use is 

established, thus carbon stocks in biomass is assumed zero after conversion, and all carbon 

of the previous vegetation is lost (and not remaining as dead organic matter). For grassland 

and cropland, the new vegetation is assumed to be fully established shortly after the 

conversion. For perennial woody vegetation, accumulations and losses in biomass are 

accounted for as in land remaining within the same category. For forests, growth rates of trees 

are considered and a distinction is made between intensively managed forests and naturally 

regenerating forests, different tree species and climatic regions.  

In Tier 2, land use transitions can be taken into account, where not all vegetation is removed 

from the land at once. A disturbance matrix can be used to summarize the retention, transfers 

and release of carbon from one to another pool (above-ground, below-ground biomass, dead 

wood, litter, soil organic matter, harvested wood products, atmosphere). Generally, there is 

limited data on below-ground biomass in croplands, and calculations are mainly done for 

above-ground biomass.  

 

Dead organic matter  

It is assumed under Tier 1, that carbon stocks in dead wood and litter pools are negligible in 

non-forest land. A linear increase of dead organic matter and litter in mature forests is assumed 

over a default time period of 20 years. For crop- and grassland, a zero carbon stock is assumed 

after conversions, and all carbon in dead wood and litter is assumed to be removed from the 

previous land use. 

In tier 2, a two phase approach is applied (fast initial change, slower change thereafter). The 

gain-loss or stock-difference method can be applied. A disturbance matrix should be used to 

summarize transfer of carbon between different pools. 

 

Soil organic matter 

For organic soils, the assessment is similar than for land remaining in its land use category. 

For mineral soils, the change in SOC stocks is estimated using Equation 2.25 (IPCC, 2019). 

The SOC stocks before and after the land conversion are determined from default references 

and default stock change factors, depending on the land use and management both pre- and 

post-conversion. 
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5.1.3. FAO LEAP recommendations 

Soil organic carbon in LCA 

In 2019, in parallel to the updated IPCC guidelines, the Livestock Environmental Assessment 

and Performance (LEAP) Partnership (FAO LEAP) published a guideline for measuring and 

modelling soil carbon stocks and their changes for livestock systems (FAO, 2019).  

FAO LEAP recommends to account for SOC changes in LCA to have a comprehensive 

assessment and to avoid burden-shifting (i.e. when the mitigation of an environmental problem 

worsen another). For livestock systems, grasslands supporting livestock production, as well 

as land use and direct or indirect land use change of feedstock production should be included 

in the evaluation. If possible, carbon sequestered in or emitted from soils should be included 

in the overall GHG balance and the ratio of grassland surface required to produce one 

functional unit shall be made explicit. 

The temporal dimension is crucial, because after a management change, SOC levels can 

rapidly change until they reach a new steady state, and SOC stocks often are slow to build up 

but are lost fast after management changes (“slow in, fast out” pattern). The choice of the time 

perspective strongly impacts the results of the LCA, as shown by Petersen et al. (2013). Typical 

time perspectives are 20 years (IPCC, 2006), but often this is too short to reach a new 

equilibrium. FAO LEAP proposes to use 100 years, the same time perspective typically used 

for GWP (in line with Petersen et al., 2013). Benefits of carbon sequestration (or the burden of 

carbon emissions) can be linearly allocated throughout a fixed period (e.g. equally over 20 or 

100 years of production). 

FAO LEAP highlights the importance of the appropriate selection and transparent 

communication of the system boundary, in line with the goal and scope of the study. An 

incomplete system boundary could foster burden-shifting, i.e. if the benefits in focus (e.g. 

reduced methane emission due to changes in cattle feed) cause greater burdens elsewhere 

in the supply chain (e.g. deforestation for producing feed). Therefore, all GHG emissions from 

land use and land use change should be included and effects of soil carbon changes on all 

components (e.g. imported feedstock or manure application) need to be considered too (FAO, 

2019). In a separate document, guidance on how to account for effects of feed additives (e.g. 

on enteric fermentation) in environmental assessments is provided (FAO, 2020). 

Since accounting for SOC can have a strong impact on the overall GHG balance, and there is 

still no consensus on how SOC should be accounted for, a critical review should be made 

before reporting LCA results including SOC changes. In such a review, it should be assessed 

if the model and data chosen were appropriate for the study.  
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Three level approach of FAO LEAP 

FAO LEAP proposes a three level approach to estimate SOC stocks and SOC dynamics using 

simulation models. The level should be selected depending on the purpose of the study, the 

spatial scale, and data availability. An overview on the validity of the model for different 

modelling purposes is given in Table 4. For LCA, FAO LEAP considers level 2 and 3 models 

valid and common practice (especially for land management change). Level 1 methods are 

rated as having limited accuracy and acceptance, but are suitable for assessing land use 

change or to get a first estimate of the expected SOC change direction or amplitude, when 

specific data is not available. 

Level 1: ‘Empirical’ Models provide a first indication to predict the magnitude or direction of 

carbon stock changes, e.g. using IPCC factors that can be adapted based on region-specific 

experiments. However, these simple models often have limited accuracy for a specific region 

or system. Examples are the stock change factor method (IPCC, 2006) or simple carbon 

balance equations based on a set of predictors. The latter considers first order kinetic decay 

(dependent on a coefficient of mineralisation) and humification rates (dependent on types of 

crop residues and plant carbon inputs). At level 1, different SOC pools, their stability or 

temporal changes in mineralisation and humification rates are however not accounted for. 

Level 2 ‘Soil’ Models simulate SOC dynamics over time, and use data on plant carbon inputs 

and environmental parameters affecting carbon sequestration and losses. Examples are 

YASSO (Liski et al., 2005), ICBM (Andrén & Kätterer, 1997), C-TOOL (Taghizadeh-Toosi et 

al., 2014), CANDY (Franko et al., 1997), Roth-C (Coleman et al., 1997). These models are 

often based on different conceptual C pools, with different decomposition rates and 

stabilization mechanisms, with carbon transfers from plant and animal biomass to microbial 

biomass and to different pools of soil organic carbon. However, models at level 2 do not include 

other complex dynamics such as plant growth or nutrient dynamics and may have limitations 

when applied to specific situations. 

Level 3 ‘Ecosystem’ Models integrate the feedbacks from multiple soil-plant- atmospheric 

processes on SOC dynamics and can be used to analyse impacts between agricultural 

management, crops and soils, as well as trade-offs between SOC change and other 

environmental indicators or crop-yields. They simulate above and belowground plant biomass 

growth and carbon inputs, soil water dynamics, nutrient dynamics and their interactions, based 

on different organic C pools (active, slow, passive, inert). Examples are EPIC (Williams et al., 

1984), CENTURY (Parton, 1996), DNDC (Li, 1996), DAISY (Svendsen et al., 1995), 

SOCRATES (Grace et al., 2005), MEMS 2.0 (Zhang et al., 2021). Some level 2 models have 

been incorporated into ecosystem or farm models (e.g. ICBM in HOLOS (Kröbel et al., 2016), 

which was developed to estimate SOC changes and whole-farm greenhouse gas emissions). 

Some ecosystem models have SOC subroutines (DSSAT (Jones et al., 2003), APSIM 

(McCown et al., 1996)) or are specifically oriented to livestock systems, and also simulate SOC 

dynamics (e.g. ECOMOD Suit, including EcoMod, DairyMod, and SGS Pasture models 

(Johnson et al., 2008) or PaSIM (Riedo et al., 1998)). 
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Table 4 Validity of simulation models of different complexity (Level 1, 2 and 3) for various purposes (source: FAO 
(2019)). Red: invalid, yellow: limited accuracy and acceptance, green: valid and common practice. 

 Model complexity 

Purpose Level 1 Level 2 Level 3 

National accounting    
Comparing management practices    
Optimizing ecosystem services    
Climate change scenarios    
Benchmarking    
Life cycle assessments    
Cross compliance (including other GHGs)    
2-3D modelling (depth profile, lateral fluxes)    
Upscaling    
Commercial farm assessment    

 

5.2. Examples of carbon models in agricultural LCAs 

5.2.1. FarmLCA 

Short description of model 

The FarmLCA model (Meier & Moakes, 2019; Schader et al., 2014) can be used to assess the 

environmental and economic performance of farm products, enterprises and systems. It 

consists of i) a farm system model, ii) an LCA part, and iii) an economic assessment module, 

and allows to calculate cradle-to-farm gate LCAs. The livestock and plant production 

enterprises and their interlinkages can be modelled in detail, as well as changes in carbon 

pools in soil, based on the land use history and management. The farm-specific transfer 

between livestock and plant production, such as on-farm feed and forage as well as diet-

specific manure, can be considered. FarmLCA is specific to different livestock herd structure, 

their nutrient requirements at different life stages, the enteric fermentation and manure 

management, as well as plant nutrient requirements and N, P and carbon emissions. Direct 

emissions, e.g. of nitrous oxide (IPCC, 2019), ammonia (EMEP/EEA, 2019) and nitrate (Faist 

et al., 2009) are modelled. The FarmLCA version 4.1 also allows to assess agroforestry 

systems, by permitting to model multiple land uses on one field (e.g. crop production under 

trees and grazing of crop residues) with multiple outputs (e.g. fuelwood, grains and meet). 

Data from ecoinvent version 3.8 (Wernet et al., 2016) and AGRIBALYSE® (2023) are linked 

to the FarmLCA to calculate impacts of background processes (such as the production and 

transport of agricultural inputs which are not part of the main system analysed). A set of 

plausibility checks are implemented to allow validating data during data entry and a set of 

standard data is implemented to assist in filling potential data gaps. Finally, environmental 

impacts on-farm as well as off-farm (e.g. of purchased inputs) can be calculated based on the 

Impact World+ methodology (Bulle et al., 2019) for different functional units. 
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Soil C-Sequestration 

The FarmLCA model allows the user to choose how to model SOC changes: 1) not include 

changes; 2) calculate SOC changes based on IPCC (2019) Tier 1; or 3) based on IPCC (2019) 

Tier 2 approach. Results of SOC changes are always displayed separately from other GHG 

emissions. In the following, the IPCC Tier 2 approach is described in more detail. It is based 

on a steady state method calculated with a simplified CENTURY model, to quantify carbon 

sequestration (IPCC 2019). It is a dynamic model, thus it is designed to capture changes on 

soil carbon across time. At its core, carbon pools representing different stages of 

decomposition and stabilization of carbon in soil are modeled along with microbial and 

chemical processes, integral to the breakdown of organic matter (Figure 3). Varied 

decomposition rates across carbon pools influence the release of carbon dioxide into the 

atmosphere. To determine the status-quo of soil organic carbon, the dynamic model is 

initialized over 20 years, using monthly climatic data of the past, encompassing temperature 

and precipitation, which influences microbial activity and decomposition rates. The model 

incorporates feedback mechanisms, where alterations in carbon pools influence future 

decomposition rates and carbon cycling.  

Farm management practices, such as tillage, crop residue management, and organic 

amendments like manure, are considered in carbon inputs, outputs, and overall soil carbon 

balance.  

 

Figure 3 : Dynamics modelled by the CENTURY model with carbon pools and the varied decomposition rates 
across carbon pools that influence the release of carbon dioxide into the atmosphere.   

 

The FarmLCA model employs an individual plot modeling approach for each year, 

accommodating several crops such as green manure or mixed crops within a single plot. For 

each plot, explicit definitions are required for tillage practices and carbon input. This carbon 

input is determined by calculating the residue left on the field, incorporating both crop residues, 

including green manures, and carbon from manure input. The model offers flexibility by 
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allowing adjustments of manures to meet crop requirements while considering the availability 

of manure on the farm. 

To initialize the CENTURY model embedded in the FarmLCA model, an assumption is made 

that the crop combination being modeled aligns with a long-term crop rotation. Additionally, it 

assumes that the practices modeled have been consistently implemented over the preceding 

20 years. Subsequently, the model calculates the average soil carbon in the year before the 

assessment (t-1) for all fields. The soil carbon in the current year (t) for each field is then 

determined based on the specific carbon input of the plot in that year relative to the average 

soil carbon in the previous year (t-1). This process ensures a dynamic representation of soil 

carbon dynamics within the FarmLCA model. 

The model configuration allows for the initiation of the CENTURY model using a specified 

baseline, as depicted in Figure 4. In the context of scenario runs, there is a feature that enables 

reliance on the outcomes of the baseline without the necessity for re-initialization. This design 

enhances efficiency and streamlines the modeling process, allowing for the seamless 

continuation of scenarios based on the established baseline conditions. 

 

Figure 4: Initialisation of the CENTURY model from scratch or based on the baseline  

The model provides flexibility in handling climatic data by allowing easy substitution with 

alternative sources. While the model is adaptable to various data inputs, the standard data 

available is sourced from CRU v4 CY (Harris et al., 2020). This dataset represents the average 

climate conditions at the country level. For future climate projections, the default setting relies 

on the average data from the last two decades.  

The FarmLCA model introduces flexibility in accounting for soil carbon within the life cycle 

assessment (LCA) framework, accommodating different perspectives. Two primary 

approaches are offered to model users, each aligning with distinct viewpoints: 

1) Yearly Perspective (IPCC Recommendation): This approach adheres to the IPCC 

recommendation, where soil carbon is computed as the summation of the active, slow, 

and passive pools. This yearly perspective provides a comprehensive overview of soil 

carbon dynamics over shorter time intervals, as suggested by IPCC guidelines for 

annual national GHG inventories. 

2) LCA Perspective: In alignment with an LCA perspective, where the emphasis is on 

considering carbon storage over the long term, it becomes crucial to address the 
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potential for short-term losses, especially when following the IPCC approach. Baveye 

et al. (2023) show that a substantial portion of the soil carbon input in the year of 

assessment might experience rapid losses within the following 20 years. This temporal 

vulnerability is particularly notable for the active and slow pools. 

Given these considerations, the FarmLCA model introduces a nuanced approach to account 

for long-term carbon storage. In line with the findings of Baveye et al.(2023), the model offers 

the option to focus exclusively on the passive pool. This pool, representing carbon that has 

mineralized, tends to exhibit more extended persistence over the 20-year timeframe, as 

opposed to the active and slow pools. 

The FarmLCA model, recognizing the non-linear accumulation of the passive pool over time, 

compute the total accumulation of the passive pool over 20 years as uses the yearly average 

to account for carbon sequestration in the specific year for which the life cycle assessment is 

conducted. 

 

Biomass and dead organic matter in agroforestry systems 

Similar to SOC changes, the FarmLCA model allows users to choose if the changes of carbon 

stored in biomass should be account for with IPCC (2019) Tier 1 or Tier 2 or not included in 

the analysis. In the Tier 1 approach, emission factors from Cardinael et al. (2018) were 

adopted. For Tier 2, the Gain-loss-Method was implemented, using standard data of the weight 

of different tree species for silver birch, beech, larch, Norway spruce, oak, scots pine, conifers 

and other broad-leaved trees. 

For dead organic matter of woody biomass, the annual change is calculated according to the 

Tier 2 gain-loss-method.  

In its current form, the model allows to account for a set of tree species, but it has the flexibility 

to add new species that have been parameterized beforehand. 

 

5.2.2. Introductory Carbon Balance Model (ICBM) 

Short description of model 

ICBM is a simple model to simulate soil C dynamics in agricultural soil (Andrén & Kätterer, 

1997; Bolinder et al., 2018). It is a dynamic two-compartment model with first-order kinetics. 

Multiple pools of “young” materials are represented as independent pools with first-order 

decay, with a time constant of roughly 1 year. Part of the C leaving the young pools enter a 

pool of “old” materials, which also has first-order decay, however with a much longer time 

constant of roughly 200 years. 
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A recent calibration of ICBM based on data from long-term field experiments at two sites in 

Sweden included separate young pools for above-ground plant residues, below-ground plant 

residues, manure, sewage sludge, sawdust, peat, and compost (Bolinder et al., 2018). 

ICBM has been used in research on soil C dynamics(e.g., Kätterer et al., 2011; Poeplau, 

Aronsson, et al., 2015; Poeplau, Kätterer, et al., 2015) and in applications including national 

inventory reporting (Sweden) and LCA studies (e.g., Hammar et al., 2022). 

Expressed in equations, the model has the following parts. 

The young pools j = {manure, above-ground, below-ground, ...} have (possibly time-

dependent) C inputs Ij and exponential decay with a common rate constant r kY: 

dYj/dt = Ij(t) - r kY 

A pool-specific fraction hj of the C leaving each young pool is transferred to the old pool 

(“humified”); and the old pool has exponential decay with rate constant r kO: 

dO/dt = Σj hj r kY Yj(t) - r kO O(t) 

The exponential decay parameters have a common factor r, which represents soil and climate 

conditions. The idea is that the factors kY and kO represent what is intrinsic to the C-containing 

substrates while r represents site-specific (possibly time-dependent) conditions. 

 

Main features of model 

ICBM predicts SOC response to different crops and management practices. It is limited to 

mineral soils. As the model is time-continuous, results are easily calculated for any chosen 

time frame. The model is not spatially explicit, but in principle it can be adapted to any spatial 

resolution subject to calibration data availability. 

 

Required input data 

Each of the young pools is associated with different parameters for “humification”, 

corresponding to substrate quality (above-ground crop residues, below-ground crop residues, 

manure and other organic amendments). Each pool has a time constant for the first-order 

dynamics. A combined soil-climate factor is calibrated using daily weather data, pedotransfer 

functions for soil/air temperature, and response functions for the influence of soil water and 

temperature on biological activity. 

After this calibration, the inputs needed are simply quantities (e.g., annual) of inputs of above-

ground and below-ground crop residues and organic amendments. 

 

Usefulness for LCA 

ICBM can be used to estimate SOC balance in mineral soils under different crops and crop 

management. See, for example, Hammar et al. (2022). 
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5.2.3. MEMS framework 

Short description of model 

The MEMS model is a complete ecosystem model including N cycling, plant growth, microbial 

processes and carbon pools dynamics (Zhang et al., 2021). The pools included in the model 

are physically defined and can be directly measured, as opposed to traditional models (e.g., 

RothC, Century or DayCENT) that represent conceptual pools based on turnover time (e.g. 

active or passive) but that cannot be directly measured. The MEMS model belongs to a new 

generation of models based on recent evidence and advancements on conceptual frameworks 

about the processes of SOM formation and persistence, where measurable soil C pools and 

fluxes play a central role (Zhang et al., 2021). Among these new generation of models, MEMS 

is a SOC model that includes physically measured pools that accords with recent frameworks 

on SOM formation such as the microbial efficiency–matrix stabilization (MEMS) hypothesis 

(Cotrufo et al., 2013). Under this framework, there is a paradigm shift where labile plant 

residues would lead to stable SOM, due to their higher usage by microbes and affinity to the 

mineral soil matrix.  

 

Main feature of model 

The main feature of the model is the consideration of functionally defined and measurable 

SOM pools that results from known biogeochemical processes. This characteristic has the 

potential to overcome the limitations of traditional SOM models, that have shown contrasting 

results under similar environmental and land management scenarios. A key point of the MEMS 

model is the coupling of C and N cycles. This allows the incorporation of feedbacks between 

both elements, such as the effect of N limitation on decomposition or the presence of 

constrains based on known stoichiometric relationships.  

 

Required input data    

A simplified version that only simulates litter and soil components for a single layer and a site 

requires data about three major categories: daily weather data (maximum temperature, 

minimum temperature and precipitation), soil characteristics such as (pH, soil bulk density, 

sand content and rock fraction) and land use. Some input variables such as site net primary 

production (NPP) or C inputs are need at a daily basis. 

 

Limitations of the Model 

The MEMS model does not incorporate common agricultural practices. Land use is defined in 

broad categories and related to main vegetation types. It is a complex model which requires 

knowledge and time to master. The calibration of the model is related to the fractionation of 

SOM, which makes its usage by non-experts difficult. It is in the forefront of SOM dynamic 

research. 
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Usefulness for LCA 

The model can provide detailed information on the mechanisms operating for SOM dynamics 

and turnover. It can help to understand the potential of C accrual in the different soil fractions 

and may help to interpret LCA results. The model can estimate key ecosystem variables, 

including SOC changes, in response to land use change and management. However, the 

model might not be suitable to directly be applied in an LCA because of the lack of a thorough 

validation of the accuracy of SOC estimations following land use change (Zhang et al., 2023). 

 

5.2.4. Agrecalc 

Short description of model  
Agrecalc is a user-friendly farm-scale carbon calculator that includes agricultural soil C 

balances, based on the IPCC tier 1 model (Topp et al., 2017). Parameters fit to data that is 

easily accessible to farm owners and managers, with assumptions relating to soil type using 

national soil data and farm coordinates. It has been used widely for farm-specific carbon 

calculation as a farm management aid, as well as various LCA studies (Barnes et al., 2022; 

De Vries et al., 2022; Sukhoveeva, 2021; Topp, 2017; Topp et al., 2017). 

 
Main feature of model  

The primary feature of the model is that it can estimate baseline carbon stocks based on 

geographic location as well as national soil data and can predict SOC response to land use 

change, management and application practices. The model can be applied on a farm scale, 

for various farm types, sizes and locations (Sukhoveeva, 2021). The model assesses soil C-

carbon impacts for a chosen year, based on the average expected annual changes over the 

course of a 20-year timeframe (it is assumed that soil-C impacts will remain steady for 20-

years and level off/normalise after 20-years) and is calibrated for arable and pasture mineral 

soils.   

  

Required input data  
Agrecalc requires details of the farm location and enterprise details such as which livestock 

and crops are grown on-farm. It also requires information on farm inputs such as imported 

feed, livestock bedding, fertilisers and pesticides, as well as exports of livestock products, 

crops, and other products (Topp et al., 2017). Additionally, information is needed on land use 

change practices (such as conversion from grassland to cropland), land use management 

practices (such as livestock grazing intensity and tillage), as well as input use and application 

(such as chemical and organic fertiliser application as well as cover cropping)(Sukhoveeva, 

2021; Topp et al., 2017).  

  
Usefulness for LCA  
The model can be used to provide quick, easy and accessible estimates of SOC balance under 

different livestock and arable farming systems (Sukhoveeva, 2021; Topp et al., 2017).  
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Limitations of the model 
The Agrecalc model was developed as an easy to use model to aid decision making in farms, 

which means accessibility to farmers is prioritized ahead of flexibility and reducing 

assumptions. It is not possible to adjust the internal parameters and embedded questions 

according to farm type or specific research aims, as the tool is designed to capture all farms 

with minimal input from the end-user (Sukhoveeva, 2021). Again, due to the tool being 

designed specifically for farmers to assess farms on a given year, it is not possible to assess 

different spatial scales (specific parts of a farm, or regional farm systems), or to make 

assessments over a time-scale more, or less than a year. 

 

5.2.5. Implementing IPCC models in LCAs 

Short description of models  
IPCC has 3 tiers of models based on different sets of equations that utilise the most advanced 

datasets and experimental findings to estimate agricultural soil C balance. The Tier 1 model is 

the most generalised and requires the least data, mostly using default figures with high levels 

of assumptions that are provided by IPCC (Hergoualc’h et al., 2021; Mathivanan et al., 2021). 

If more detailed (rigorously documented country-specific) emission factors are available then 

the Tier 2 model may be applied. This requires more data, but uses less assumptions and is 

country-specific, thus providing more accurate results (Thiagarajan et al., 2022). The Tier 3 

model is the most accurate model but requires additional data components and modelling 

beyond those provided by IPCC. For all tiers, parameters can fit to long or short-term field 

experiments and/or data can be provided by IPCC for different data components (Rodrigues 

et al., 2021). 

 
Main feature of models  

The main feature of the IPCC models (applied in LCAs) is to estimate the implications of 

different crops and management practices to SOC. While the models are not spatially explicit, 

they are commonly used at a national scale. Moreover, the models can be adapted for any 

chosen time frame and can be applied to arable and pasture mineral soils (Rodrigues et al., 

2021), but also organic soils.  

 
Required input data  
There are a range of different data inputs relating to crops and management practices that are 

required for various equations associated with estimating SOC changes. These data inputs 

can come from IPCC default values, from the literature or from experimental work. Equations 

are used to determine various components associated with carbon inputs and outputs from 

the system, such as the carbon content of manure at the point of application (based on 

livestock type and diet, in addition to manure storage type and duration), as well as the fraction 

of this carbon that is absorbed by the soil (Thiagarajan et al., 2022). 
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Usefulness for LCA  
IPCC are flexible models that can require limited data and expertise (Tier 1 model), or 

additional data and expertise (Tier 2 and 3) (Hughes et al., 2023). They can be used to estimate 

SOC balance under different crops and livestock management systems yet they do not reflect 

local conditions (especially Tier 1) (Mathivanan et al., 2021).  

 

5.3. Carbon models used for agroforestry-systems 

In agroforestry systems, woody vegetation is deliberately integrated into crop or animal 

systems. These systems are highly diverse and change in non-linear ways, as the different 

components (trees, crops and livestock) show substantially different growth periods and 

diverse interactions (Burgess et al., 2019). Getting experimental data about agroforestry 

systems is a challenge, because the long time periods involved in woody vegetation growth 

would require long-term data collection and research financing. 

An alternative solution is the development of models to predict tree, crop, and livestock growth. 

More specifically quantifying the carbon stocks and flows in the system. There are two major 

carbon stocks considered in agroforestry systems, above ground and below ground (Nair et 

al., 2010). Above ground considers tree and crop growth, whereas below ground takes into 

account the carbon from leaf and branch fall, livestock or other fertiliser, and root 

decomposition. 

To better understand the different methods involved in carbon modeling, three models are 

summarised below. Each model excels in certain areas but may make assumptions or exclude 

other areas. 

 

5.3.1. Agroforestry Carbon Code 

Short Description of Model 

This model was developed as part of a feasibility study to identify if a woodland carbon code-

style model could be useful (Soil Association, Woodland Trust et al., n.d.). The user creates a 

customized tree growth model using input measurements from their land/surrounding 

landscape. The model then predicts how biomass and thus carbon changes over time. Tree 

biomass is estimated using the Bunce Equation (Bunce, 1968) which relates the tree Diameter 

at Breast Height (DBH) to the dry weight and thus carbon of the tree systems. This is only 

relevant for above ground biomass. Belowground biomass estimates are made based on 

woodland carbon assessment protocol and their relevant equations relating DBH to root 

biomass (Jenkins, 2018). 

 

Main Features of the Model 

The primary outputs of the model include values for aboveground and belowground biomass 

in open-grown trees for a 30-year period. In addition, carbon emissions through planting and 
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management activities are also produced, the results of which are subtracted from the biomass 

to calculate net carbon sequestration for the agroforestry system. 

 

Required Input Data 

The tree growth models require DBH data for species of interest at varying ages, ideally from 

samples on or local to the site being modelled. In order to produce reliable models, at least 

three ages/development stages ranging from three to 150 years are required. This improves 

the applicability of the results to that particular site. Tree numbers and density are also 

important factors required to calculate total biomass/carbon sequestration over an area 

(normally per hectare). Finally, the emissions from planting and management need data on 

soil preparation, staking methods, fencing materials, tree guards, mulching, restocking 

practices, understory management, canopy and root management, and product harvesting. 

 

Limitations of the model 

The Bunce equation was developed on broadleaved species in Scotland and thus may offer 

limited evaluation for species and locations that are significantly different. The Bunce equation 

was also specifically used for its relevancy to open-grown tree systems. As such denser 

systems including hedgerows and woodlands are not well represented by this model. The 

reliance on in-field measurements for model parameterisation can mean getting a suitable 

range of ages difficult, thus limiting the outputs of the model. 

This model was an initial attempt to evaluate the potential of an independent agroforestry 

carbon code model. As such it lacks the time and detail required of a fully fledged predictive 

model. Further evaluation and refinement of this model is ongoing. 

 

Usefulness to LCA 

Alone this model offers a low-input way to calculate carbon sequestration for trees in an 

agroforestry system. It lacks the holistic approach of more detailed models, however this detail 

is not always appropriate depending on the goals and scale of the LCA. It would be best 

combined with other simple models, such as a typical whole-farm carbon calculator which 

takes into account carbon dynamics other than trees. 

 

5.3.2. Integrating RothC (soil C) into YieldSAFE (C in biomass) 

Short Description of Model 

Yield-SAFE, is a parameter sparse model to estimate aboveground biomass in agroforestry 

systems (van der Werf et al., 2007). It may be considered a “single-leaf” type of model where 

all the resource competition is estimated at single area unit. Originally developed for silvo-

arable systems, it has been improved over the years to consider grassland/pastures, 

improvement of provision of pan-european climate datasets, estimation of carrying capacity, 

carrying capacity effect on pasture yields, or effects on microclimate and thus animal welfare 
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incorporating animal stress indexes (e.g. temperature humidity index: THI), amongst other (see 

Palma et al., 2017). Within these improvements, there was the integration of the widely used 

model RothC to simulate underground carbon dynamics. The Yield-SAFE has been improved 

also to interact with RothC on the estimation of input plant material into soil (i.e. leaf fall and 

root mortality) while maintaining the original aspiration for a simple conceptualization of 

agroforestry modelling (Palma et al., 2018).  

 

Main Features of the Model 

Yield-SAFE can simulate silvo-arable, silvo-pasture, and treeless systems (just crop, pasture, 

or forest). Within the silvo-arable/silvo-pasture systems, resource competition (water and light) 

between crops and trees are modelled in a daily time step. This is done via simple equations 

and parameter values, many of which are available in the literature (e.g. radiation use 

efficiency, water use efficiency). This makes it relatively easy to parameterise new species into 

the model. 

The model only has a single soil layer. This soil layer uses models of soil tension with the van 

Genuchten equation (1980) and commonly occurring parameters e.g. Wösten et al. (1999). 

Soil carbon is calculated through the integrated RothC model. This estimates the incorporation 

of tree leaf fall, tree root mortality (using the theory of the whole-plant economics spectrum), 

and crop residues (above and below-ground) after harvest as organic matter inputs to RothC. 

The model operates on a daily time step providing a detailed output. The interface is currently 

excel-based but work is ongoing on a python version for self-development and applications. 

For a list of trees and crops available in the model, see Palma et al. (2017). 

Required Input Data 

Daily weather data is required for the model calculations. This can be retrieved automatically 

via clipick (Palma, 2017)2. This tool can be used for retrieving climate format for Yield-SAFE 

and Hi-sAFe model (section 5.3.3). Soil data is also necessary, specifically depth and texture 

(choice of five FAO classes which determine parameters for the van Genuchten equation, as 

defined by Wösten et al. (1999). Dates of planting and pruning for trees, and sowing and 

harvesting for crops need to be entered. For soil carbon the inputs for RothC are required; soil 

organic matter, bulk density, soil depth until carbon dynamics are present, and rate of 

decomposition. Finally, if new trees/crops are added into the model then they require additional 

parameters (~10). 

 

                                                      
2 Code also available via github: https://github.com/euraf/clipick 
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Limitations of the model 

The Yield-SAFE model does not model nutrient dynamics and is not 3D nor spatially explicit. 

The preset assumes a single rotation of trees (i.e. full harvest for timber) and has not been 

developed with coppice in mind, although it may be possible to include a coppice-style rotation. 

The model is also limited in that it doesn’t deal with mixed tree systems (i.e. multiple species 

of trees) or perennial undercover (shrubs). Livestock interactions are also limited to 

provision/grazing and nitrogen or carbon inputs from livestock are not included. 

There are also technical limitations. If the model is set to run with many years (e.g. rotations 

of slow growing trees), and if multiple climatic scenarios are stored in the MSExcel file, then 

the file size can become large and may struggle to open/run on some computers. The ongoing 

python version can help with these technical limitations but requires some programming 

knowledge so, currently, is less user friendly.  

  

Usefulness to LCA 

Yield-SAFE has been used for LCA assessments before using a “carbon balance” method 

(Crous-Duran et al., 2019). However, the model requires some experience, time and data to 

calibrate new species, which can limit its usage in LCA analysis. 

 

5.3.3. Hi-sAFe 

Short description of model 

Hi-sAFe is a 3D model that simulates tree and crop growth and management interventions, 

soil water and nitrogen fluxes, and soil organic matter processes (Dupraz et al., 2019). The 

model combines in a single platform the crop model STICS and the tree model sAFe-Tree. 

The model simulates a rectangular scene divided into cells. Each cell is then divided into 

various soil layers, as decided by the user. In each cell one crop or tree can be planted 

depending on the agroforestry design. Tree and crop above- and below-ground biomass is 

estimated daily. Tree biomass is calculated based on allometric equations. The integration 

between trees and crops is based on equations that calculated the interaction between 

vegetation layers for light, water and nitrogen. The model simulates several variables related 

to these three components. Hi-sAFe can model soil N2O emissions but not CH4. In addition, it 

does not include livestock components. 
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Main features of the model 

Hi-sAFe considers the three-dimensional tree-crop interactions; light, water, and nitrogen. The 

soil compartment is divided into layers and voxels, each one having a high temporal resolution 

of resource dynamics. Within the model there are several tree and crop species already 

available. Main crop species are included, as well as some tree species of interest. The 

distribution of vegetation types in the scene is flexible and different vegetation layers can be 

modelled. Multiple types of trees and crops management are also considered, e.g. pruning, 

harvesting, mulching, fertilization, tillage, etc. Crop rotations can be also modelled. Similar to 

Yield-SAFE, the time-stop unit is daily. The trees and crop’s dynamic response to changing 

climatic conditions and resource availability is also modeled. 

Hi-sAFe relies on the STICS model to simulate SOC dynamics. In the STICS model the 

involvement of residues, microbial biomass, and active pools are considered in the 

mineralization process, while the stable pool is presumed to remain inert over the course of a 

century. The simulation encompasses the decomposition of organic residues such as plant 

residues or organic amendments. The organic matter within residues is assigned to a singular 

pool undergoing decomposition through first-order kinetics, governed by a decomposition 

constant. The resulting decomposed organic matter undergoes either mineralization (yielding 

CO2) or assimilation by the microbial biomass. 

 

Required input data 

The model requires multiple parameters for trees and crops related to allometry, physiology or 

phenology. The parameterization of a new species is a daunting task, being mostly reliant on 

the available species included in the model. Tree parameterization requires less parameters 

than crops. The model needs detailed information on soil properties and layers, regarding soil 

texture, organic matter, stone content, initial soil water and N content or pH among others.  

Daily weather data (precipitation, temperature, relative humidity, wind, and radiation) should 

be also provided. Management interventions need to have dates and intensity described. For 

instance, for fertilizers quantity, quality, date of application and associated labour must be 

supplied. All the information about trees, crops, soil and weather should be supplied in 

dedicated data files.   
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Limitations of the model 

The model was created to simulate silvo-arable systems. It has a great flexibility to be adapted 

to other systems, but it requires the measurement of several parameters in the field. The 

learning-curve is steep and error prone as the model contains more than 400 parameters that 

can be individually changed. It is a complex model because it simulates in detail various 

specific mechanisms (e.g. soil water, nitrogen and carbon dynamics, tree and crop production 

and phenology) and the interaction among them. 

 

Usefulness to LCA 

At its core, Hi-sAFe relies on the STICS model to simulate soil and crop dynamics. STICS has 

been extensively used to model agricultural systems. It is regarded as a complex model (sensu 

Avadí et al., 2022), thus it can overcome some limitations of simple models to estimate direct 

field emissions or SOC dynamics. On the other hand, this model requires high expertise, time 

and data which can limit its usage in LCA. 

 

5.4. Examples of agricultural LCA studies including 
biogenic carbon 

5.4.1. Comparison of measurements and different models for SOC changes in crops 

Goglio et al. (2018) compared several methods to estimate CO2 and N2O emissions from soils 

in agricultural LCAs: 

 (a) measurements from a seven-year crop rotation field experiment in Manitoba, Canada 

, (b) Tier 1 and (c) Tier 2 IPCC methodology,  

(d) ICBM for CO2 combined with Tier I for N2O emissions, and 

 (e) the DNDC agroecosystem model.  

Comparisons were made for perennial and annual crops, legumes, cereals and whole cropping 

systems for a time series with 28 time intervals (four per year over seven years). They did not 

find statistically different results between measured soil CO2 emissions and any of the four 

modelled results for any of the crops or the cropping system as a whole. 
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 Although this suggests that modelled results were in agreement with measured data, the 

absolute values and the direction of predictions (net emission or sequestration) deviated 

strongly for single time intervals. For only about half of the time intervals, the measured CO2 

emissions were within the range of the modelled results, for the other half, the measured CO2 

emissions or sequestration was considerably larger than any of the models. The measured 

CO2 emissions from or to soil were highly variable across the 28 reported measurements times 

and ranged from net positive emissions to negative (SOC accumulation, see Figure 5), while 

modelled results showed lower variation between time intervals. For about half of the 28 

assessed time intervals, the predictions of the four models ranges between net positive and 

negative CO2 emissions, while for the other half the predictions ranged between no emissions 

to net positive or no emissions to net negative emissions. The authors also stated that results 

from measuring CO2 flux and soil carbon can be highly variable and inaccuracies in quantifying 

net CO2 can occur in site-specific assessments. The study by Goglio et al. (2018) shows, that 

a model validation is difficult to perform in the context of LCAs, where the long-term changes 

on SOC are of interest, while in reality dynamics are highly seasonal as well as inter-annual. 

In addition, it shows how different modelling approaches that have been applied in LCA 

contexts even disagree in the short-term direction of SOC changes (positive or negative). This 

agrees with the difficulties of traditional models to assess SOC dynamics (see section 5.2.3). 

The strong variability on SOC is particularly relevant for arable crops in crop rotations. 

However, also for permanent grassland (non-pasture), recently published data from a 16 year 

experiment showed large inter-annual variations: in nine years, the grassland accumulated 

carbon, in seven years it acted as a carbon source (Feigenwinter et al., 2023). The authors 

conclude that under the ongoing climate change, it will be difficult to maintain even a small 

grassland C sink in the future and will require continuous organic C imports (in this case study 

from slurry). 

 

 

Figure 5. Illustration of dynamics of CO2 emissions from arable soils over time, based on measurements 
presented in (Goglio et al., 2015). Orange: CO2 emission; green: CO2 accumulation. 
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5.4.2. Comparison of biogenic carbon models in LCA for crops and livestock 

Bessou et al. (2020) analysed SOC for five crop and two livestock products, subjected to land 

use change and land management change. They applied the three methods: i) IPCC Tier 1-2, 

ii) Müller-Wenk and Brandaõ (2010) and iii) Levasseur et al. (2012) and used a total of 22 

scenarios of land use and land management change. For the IPCC approach, both SOC and 

carbon in biomass were assessed for changing the land use from situation A to B, and 

allocating impacts over the first 20 years. The method of Müller-Wenk and Brandaõ (2010) 

connects to the land use assessment framework (see Figure 1) (Koellner et al., 2013; Milà i 

Canals et al., 2007) and calculates both occupation and transformation impacts for SOC and 

biomass for a reference situation and the land use under study. The method accounts for the 

reversibility of biogenic carbon emissions, for example after deforestation. A residence time of 

biogenic carbon in the atmosphere is calculated, based on half of the time an ecosystem needs 

to regenerate after e.g. deforestation. For fossil carbon, the residence time in the atmosphere 

is typically larger, here assumed to be 157 years according to the Bern carbon cycle model. 

The third approach of Lavasseur et al. (2012) is a dynamic LCA approach, where a dynamic 

global warming potential (GWPdyn) of GHG emissions/sequestration is assessed based on the 

timing of GHG emission/sequestration. Impacts are assessed over a 100-year horizon and all 

GWPdyn of GHG fluxes are integrated over this period.  

Brandaõ (2010) found that accounting for SOC was highly relevant compared to the overall 

GHG emissions of the assessed products. Impacts from land use change ranged from − 23 to 

+ 1702% (IPCC method) and from − 5 to + 336% (Müller-Wenk and Brandaõ, 2010). For land 

management change, impacts ranged from − 130 to +54% (IPCC) and from − 31 to + 11% 

(Müller-Wenk & Brandaõ, 2010), respectively. Dynamic LCA could only be calculated for a 

subset of scenarios, because of high data requirements and were mostly lower than the other 

approaches.  

Bessou et al. (2020) conclude that IPCC was easiest to implement from a practical point of 

view. Müller-Wenk and Brandaõ (2010) would need more differentiation of land use archetypes 

and regeneration times to be fully applicable. Dynamic LCA was most difficult to apply, 

because of the high data requirements to model carbon stock dynamics. 

 

5.4.3. Examples of SOC models applied to LCAs of livestock systems 

Two LCA case studies, calculating SOC changes, are mentioned in FAO LEAP (2019). Henry 

et al. (2015) calculated net greenhouse gas emissions per kg greasy wool at the farm-gate for 

Australian pastoral lands, including changes in SOC and vegetation. (Little et al., 2017) applied 

the ICBM in Holos-FarmModel to assess the effect of forage source on the GHG intensity of 

milk production (corn silage vs. alfalfa), including effects on enteric CH4 emissions and SOC 

changes. They highlight that SOC will change over time, and therefore report effects 

separately.  

Hammar et al. (2022) assessed the dynamic climate impact of beef production, calculating 

yearly fluxes of different GHGs, including from SOC changes, and assessing their effect on 

temperature response over time. For SOC changes from land use, the ICBM model was 

applied, assuming fallow land as a reference situation. The authors conclude that about 15–
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22% of GHG emissions arising from beef production could be compensated by carbon 

sequestration. However, when choosing potential natural vegetation as a reference (in this 

case forest), then the land would most likely result in net carbon emissions rather than a net 

sequestration (compared to fallow land).  
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5.4.4. Examples of biogenic carbon assessments within LCAs of agroforestry systems  

A recent review of 32 LCA studies on agroforestry systems showed that 17 did not account for 

carbon sequestration in biomass or soils, four studies included both carbon sequestration in 

soil and biomass, four included carbon stored in trees only and seven studies considered only 

carbon stored in soils (Quevedo-Cascante et al., 2023). In addition, the approaches and time 

horizons considered varied across studies, from soil carbon being at an equilibrium, to 

assuming an indefinite rate of change to accounting impact over 10-years  (Quevedo-Cascante 

et al., 2023). 

The carbon footprint study of Reyes-Palomo et al., (2022) assessed biogenic carbon in soil 

and biomass comparing historical and current measurements on six organic and nine 

conventional cattle farms in the Spanish Dehesa agroforestry system. They calculated a 

carbon sequestration rate for soils and biomass, assuming a linear yearly change from the 

carbon stored at measurement time 1 to carbon stored at measurement time 2, which were on 

average 22 years apart for soils and 10 years for biomass. A historical reference was thus 

used, which was 10 to about 20 years in the past. Tree above and belowground biomass 

stocks were estimated using data from the national forest inventory, based on the parameters 

“volume over bark” (m3 ha−1), biomass expansion factor, and ratio of aboveground to 

belowground biomass (as dry matter). To calculate changes in carbon stocks, the carbon 

fraction contained in each tree species were used when available. The study found an average 

sequestration rate of carbon in soils of 0.91 t C⋅ha−1⋅year−1 and of 0.07 t C⋅⋅ha−1⋅year−1 in 

trees. Including carbon sequestration reduced the net GHG emissions of cattle (in terms of 

CO2-eq) by an average of 68% (95% in organic and 54% in conventional farms). In some 

cases, C sequestration surpassed the GHG emissions of cattle and resulted in a “negative 

carbon footprint” of calf meet. The total C sequestration strongly varied between farms, from 

1.36 to 5.09 t CO2eq ha−1⋅year−1. Because C sequestration per hectare was finally linked to 

meat production, a lower livestock density resulted in a higher sequestration per functional unit 

and thus in a lower carbon footprint. The authors did not assess the reversibility of carbon 

storage or non-linear dynamics of carbon sequestration (e.g. a levelling-off of carbon 

sequestration over time).  

In the study of Crous-Duran et al. (2019) a new indicator “carbon balance” is proposed to 

compare the carbon emissions during food production with the carbon sequestered during food 

production on a specific area and time. The method is tested for wheat production in Portugal 

in monoculture and agroforestry systems. They applied the Yield-SAFE model combined with 

RothC model (Palma et al., 2018) to estimate carbon stored in biomass of trees and crop and 

in soils. Changes in SOC and carbon in biomass is modelled over 80 years, starting with the 

establishment of the agroforestry or monoculture system. A reference situation is not directly 

mentioned. Reversibility of carbon storage was not addressed in the article. The study showed 

that the production of wheat in the newly established agroforestry system showed a negative 

carbon balance (1 kg CO2eq / kg wheat) while after 50 years of tree growth, the balance 

became positive, i.e. more carbon was stored in the biomass and soil compared to GHG 

emitted for food production. 
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6. Assessing effects of short and long-lived greenhouse 
gases 

6.1. Introduction to greenhouse gases 

Substantial parts of the greenhouse gas emissions associated with livestock systems are in 

the form of methane (CH4) and nitrous oxide (N2O). Methane has a substantially higher heat-

trapping ability than carbon dioxide (CO2). However, the effect of methane diminishes over 

time as it breaks down to carbon dioxide in the atmosphere (after approximately 10 years). 

Hence, methane is classified as a short-lived climate pollutant (SLCP). Nitrous oxide has an 

even greater heat-trapping ability (radiative efficiency) than methane and also stays in the 

atmosphere much longer (around 110 years). Despite being less prevalent in the atmosphere 

than carbon dioxide or methane, its potency as a greenhouse gas makes it a substantial 

contributor to global warming. 

In LCA and climate reporting it is usual to aggregate the climate impact of different gases into 

one common unit using one of several so-called climate metrics. Two common metrics are 

GWP (Global Warming Potential), which compares greenhouse gases in terms of the 

cumulative warming (radiative forcing) they cause over a given time period (for example 100 

years), and GTP (Global Temperature change Potential), which compares greenhouse gases 

in terms of the temperature change they cause after a given time period (for example 100 

years). This chapter is dedicated to exploring the implications of the use of different climate 

metrics in LCA of livestock systems. 

In a first subsection, a closer look is taken at methane, its role in nature, and recent changes 

in its emission levels are discussed. Subsequently, attention is directed to various 

methodologies for measuring greenhouse gases with differing lifespans, including a relatively 

recently developed metric known as GWP*. The third section summarizes some of the 

literature on GWP*. The organization of this review is based on different perspectives 

regarding the GWP* metric, accompanied by the presentation of various case studies that 

have implemented this metric. The concluding section synthesises the presented knowledge, 

shows implications for LCA and proposes some recommendations on the use of climate 

metrics in LCA. 
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6.2. A closer look at methane  

6.2.1. What is methane?  

In the realm of short-lived greenhouse gases, methane is most significantly relevant to 

agriculture. Methane is characterized by an atmospheric lifespan of approximately 9 to 15 

years which is notably shorter than that of carbon dioxide. Also, it has a considerably higher 

potency, methane exhibits a global warming potential around 84-87 times greater than CO2 

over a 20-year span. The sources of methane are multifaceted, originating predominantly from 

anaerobic situations where organic matter undergoes decomposition in the absence of 

oxygen. These sources encompass both anthropogenic and natural origins. Anthropogenic 

sources include activities such as livestock husbandry, rice cultivation, waste management, 

and fossil fuel extraction. Meanwhile, natural sources comprise wetlands, wildfires, and 

geological processes.  

Once released into the atmosphere, methane undergoes natural degradation through various 

processes. One primary mechanism involves oxidation by hydroxyl radicals (OH) present in 

the atmosphere. Hydroxyl radicals act as a natural "cleaner" by reacting with methane 

molecules, initiating a sequence of chemical transformations. This oxidation process results in 

the formation of water vapor and carbon dioxide, ultimately rendering methane less potent as 

a greenhouse gas over a century.  

Recent studies show that the world is releasing more methane than the atmosphere can 

effectively break down (Saunois et al., 2020). Notably, the total amount of methane in the 

atmosphere is on the rise, and studies emphasize that the gap between emitted methane and 

its degradation is growing exponentially (Nisbet et al., 2019). Because of the higher short term 

warming potential, higher methane concentrations in the atmosphere accelerate global 

warming.  

 

6.2.2. Methane from livestock 

Methane from livestock is considered as anthropogenic, as livestock are kept by humans for 

food. Yet, methane is the result of a natural process related to microbial activities during the 

decomposition of feed in the rumen, known as enteric fermentation. The fiber content of the 

feed plays a crucial role in influencing methane emissions per cow. High-fiber diets, often 

associated with forage-rich feeds like grass, can lead to increased methane production in the 

rumen due to the metabolism of the involved microorganisms. The digestion of fibre-rich 

material results in acetate as a co-product, as well as hydrogen which is then converted to 

methane. A digestion of diets richer in starch rather results in propionate and less acetate and 

hydrogen and therefore less methane is produced.  

 from the fact that fibrous materials are more challenging for microbes to break down, 

necessitating prolonged fermentation processes in the rumen. 



 

52 

  

Deliverable 16 
Methodological development report for 

C-seq. and GHG metrics in LCA 

In addition to enteric fermentation, methane emissions in livestock production arise from 

manure management practices, particularly when manure is stored with little or no oxygen. 

This occurs in anaerobic manure management systems, such as lagoons and pits, where 

organic matter undergoes decomposition in the absence of oxygen. These systems create 

favorable conditions for methanogenic microorganisms to thrive, leading to the production and 

release of methane as a by-product of the anaerobic digestion process.  

 

Figure 6 : Methane emission trends from livestock over last 60 years by continent split by source (source : FAOstat)  

 

Over the last 60-year, methane from livestock has been increasing across all continents except 

Europe, where livestock numbers have decreased and rations have become less fibre rich 

(Figure 6).  

 

6.3. Accounting for greenhouse gases with different 
lifespan 

6.3.1. The de facto standard for aggregating greenhouse gases  

To date, the Global Warming Potential over 100 years (GWP100) is the most common metric 

in LCA. The GWP is a measure of how much heat a greenhouse gas traps in the atmosphere 

over a specific timeframe (commonly 100 years) compared to CO2. Technically it is defined as 

the cumulative radiative forcing of the gas over that time horizon. The radiative forcing 

quantifies the change in energy balance in the Earth's atmosphere due to a particular gas. 

GWP thus takes into account both the heat trapping ability (radiative forcing) of the gas and its 

persistence in the atmosphere. 
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An alternative metric is the Global Temperature change Potential (GTP). GTP measures the 

impact of gases based on how they affect global temperatures at a specific point in time (e.g. 

in 100 years in case of GTP100). Hence, GWP and GTP measure different aspects of climate 

change; GWP measures the trapped heat during a specific time period, while the GTP 

measures the temperature change at a certain future point in time (IPCC, 2022). The choice 

of metric can heavily influence results. Table 5 below shows the variation in characterization 

factors across metrics and timeframes (typically 20, 100, 500 years). These characterization 

factors are used to weight the different gases, before adding them together as aggregated 

carbon dioxide-equivalents (CO2e). 

 

Table 5. GWP and GTP characterization factors (IPCC, 2021b) 

Gas GWP-20 GWP-100 GWP-500 GTP-50 GTP-100 

Carbon dioxide 1 1 1 1 1 

Methane, fossil 82.5 29.8 10 13.2 7.5 

Methane, non-fossil 79.7 27.0 7.2 10.4 4.7 

Nitrous oxide 273 273 130 290 233 

 

6.3.2. An alternative approach - GWP*  

A few years back, the Global Warming Potential star (GWP*), was introduced as an alternative 

approach to account for gases with different lifespans. While GWP and GTP indicate the 

marginal global warming caused by emitting versus not emitting an emission pulse of GHGs 

(i.e. an emission of a certain amount of GHG at a given point of time), GWP* indicates the 

future warming or cooling of changes in GHG emission rates, compared to the present 

emission rate. An emission rate thereby refers to a certain amount of GHG emitted over a 

certain time in a certain region. 

As an indicator of future warming or cooling in an emission scenario (i.e. a scenario of how 

GHG emissions rates will change over time), GWP* captures the dynamics of short-lived 

GHGs such as methane better than GWP. Roughly speaking, GWP* quantifies the climate 

impact compared to a hypothetical scenario where emission rates of SLCPs like methane 

would be held constant at the rates seen recently (20 years ago, is the timespan proposed by 

the creators of GWP*). That is, the calculation underpinning GWP* equates a change in the 

emission rate of methane as roughly equivalent to a large pulse emission or removal of CO2 

(Lynch, Garnett, et al., 2020). In the GWP* framework, a constant emission rate of an SLCP 

has roughly zero climate effect; a decreasing emission rate has a net cooling effect (shown as 

a negative GWP* value); and an increasing emission rate has a warming effect (shown as a 

positive GWP* value). 

For GWP and GTP on the other hand, results always take positive values, reflecting the 

warming impact that an emission of a GHG gas always has, compared to if the emission had 

never occurred. 

Several evolutions of the GWP* have been proposed, shown in   
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Table 6. The initial alternative metrics has been proposed by Allen et al. (2018) with 

subsequent refinements from Cain et al. (2019) and Smith et al. (2021).  

The initial GWP* approach proposed by Allen et al. (2018) relate changes in emission rates of 

SLCP to pulse emissions of carbon dioxide. As such it approximates the temperature 

implications of emission time series, providing insights into the warming potential of different 

pollutants over time. 

A modification was proposed by Cain et al. (2019) to also account for the delayed warming 

response from SLCP. It incorporates the terms "r" and "s" to better capture this delayed effect 

and introduces the concept of ’warming equivalents’. r represents the weighting given to the 

impacts of changing the rate of SLCP emissions, and s the weighting given to the impacts of 

the current emissions rate. Here, methane is treated as a combination of 75% stock pollutant 

(s) and 25% flow pollutant (r). Lynch et al. (2020) proposed a simplified variant of this 

calculation, valid under most emission scenarios except near-constant emissions. These 

improvements aim to streamline calculations while retaining key features related to SLCP and 

their impact on global temperatures. 
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Table 6. Metrics to report GHG and its improvements. E: emission of GHG, H: time horizon considered (in years); 
GWP: global warming potential; SLCP: short lived climate pollutant; eGWP*: equity criteria applied to GWP* 

 

Metric / 
approach 

Equation  Description and main 
changes 

GWP100  𝐸𝐶𝑂2 =  𝐸𝑆𝐿𝐶𝑃 ×  𝐺𝑊𝑃𝐻 Aggregates GHG emissions 

in relation to CO2  

GWP* 
(Allen et al., 2018) 
 

𝐸𝐶𝑂2 =  
∆𝐸𝑆𝐿𝐶𝑃 

∆𝑡
×  𝐺𝑊𝑃𝐻 ×  𝐻 

Introduction of GWP*. Relates 
emission rate changes of 

SLCP to emissions of CO2. 

Approximates the 
temperature implications of 
emission time series 

GWP* 
(Cain et al., 2019) 
 

𝐸𝐶𝑂2𝑤𝑒 =  [𝑟 ×
∆𝐸𝑆𝐿𝐶𝑃 

∆𝑡
 × 𝐻 + (𝑠 × 𝐸𝑆𝐿𝐶𝑃 )]  × 𝐺𝑊𝑃𝐻  

Incorporates the terms “r” and 
“s” to represent better the 
delayed warming response 
from SLCP, where r 
represents the weighting 
given to the impacts of 
changing the rate of SLCP 
emissions, and s the 
weighting given to the 
impacts of the current 
emissions rate. Treats 
methane as 75% stock (s) 
pollutant and 25% flow 
pollutant (r). 

GWP* 
(Lynch, Cain, et al., 
2020) 

𝐸𝐶𝑂2𝑤𝑒 (𝑆𝐿𝐶𝑃) =  [4 × 𝐸𝑆𝐿𝐶𝑃(𝑡) 

− 3.75 × (𝐸𝑆𝐿𝐶𝑃 (𝑡−20) )] × 𝐺𝑊𝑃100  

 
Simplification of Cain et al. 
2019 under most scenarios 
except near-constant 
emissions. 

GWP* 
(Smith et al., 2021) 

𝐸 ∗ (𝑡). =  [𝑔 (
1 − 𝑠) 𝐻∆𝐸 (𝑡) 

∆𝑡
 ) + 𝑔𝑠𝐸(𝑡) ] 

Incorporates the constant “g” 
for further consistency with 
linear models in metric 
calculations. 

eGWP*  

(Rogelj & 

Schleussner, 

2019) 

 

See equations in reference paper: 

• eGWP*-CE: “Constant emissions” per capita 

• eGWP*-CW: “Constant warming” per capita 

• eGWP*-MW: “Minimal methane induced warming” 
per capita 

• eGWP*-ZR: « Zero Reference » per capita 
 
 

Four equity concepts with 
different grades of “fairness”. 
 
Note: “While the choice of the 
accounting metric leads to 
differences in absolute terms, 
the general patterns are 
similar between all alternative 
eGWP* metrics”. 
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Smith et al. (2021) proposed a modified version that incorporates the constant "g" to enhance 

consistency with linear models in metric calculations. This addition contributes to the reliability 

and coherence of the GWP*, ensuring a more accurate representation of the warming potential 

associated with different pollutants. 

Additionally, modified versions of the metrics have been proposed to address certain 

limitations, as will be explored in the following section. Among these alternatives, the eGWP* 

has gained prominence, specifically addressing equity concerns associated with the 

application of GWP* when not used at global scale (Rogelj & Schleussner, 2019). 

 

6.4. Critiques of the GWP*-approach 

The GWP* approach has received considerable attention and has been especially welcomed 

by livestock organisations and businesses. The fact that with GWP* constant methane 

emissions only contributes little to future additional warming has been used by some to argue 

that emission reductions from livestock in stable or declining herds (which is the case in many 

European countries, see Figure 6) should not be prioritised. This reasoning however neglects 

the fact that constant methane emissions contribute to maintained warming. There has also 

been numerous discussions and debates in the scientific literature of the consequences of 

using GWP* for different applications. We shortly summarize these here. 

 

Equity and fairness concerns 

Rogelj & Schleussner (2019) argue that when GWP* is used for individual emitters (as 

opposed to at the global level), e.g., at the country level, countries with high past SLCP 

emissions are rewarded because reducing emissions from these high levels would give them 

the right to continue emitting similar amounts in the future or to receive credits for other GHGs. 

This raises concerns about equity and fairness, as developing countries with low historical 

SLCP emissions would be punished for increasing their emissions. Because GWP* 

calculations are often based on a country’s past emissions levels, this is comparable to 

adopting the “grandfathering” principle. As an alternative, the authors propose approaches with 

varying degrees of fairness to allocating future emissions contributions. For instance, by 

assigning future emissions on a per-capita basis. Using these approaches substantially alters 

the outcomes compared to the GWP* metric calculated at the national level.  

 

Perceived negative warming contributions 

With GWP*, negative results are possible, e.g. if a country reduces methane emission from 

high levels, this would be reported as negative emissions in GWP*. This could be perceived 

as a “cooling” which is usually the case for negative emissions, e.g. by removing carbon dioxide 

from the atmosphere. However, in the case of methane is it rather the case that these negative 

emissions imply "less warming" compared to the current emissions rate (Cain et al., 2019; 

Rogelj & Schleussner, 2019). However, it is important to consider that an emission of methane 

will always result in warming compared to if the emission would not have occurred at all. 
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Meinshausen & Nicholls (2022) claim that capturing such marginal effects of emissions should 

actually be one (of several) requirements of a ‘metric’: 

 “…a metric should…approximate the marginal climate effect of an emission action (climate 

effect of emitting one additional ton of a greenhouse gas, compared to a world in which that 

emission did not happen), so that a policy framework can appropriately reflect that externality.”  

Collins et al. (2020) on the other hand, claim that a metric, although traditionally applied to 

pulse emissions, can also be applied to step changes in emissions rate. Hence, there seems 

to be some conflicting views in the literature on what constitutes a ‘metric’.  

 

Additional concerns 

Rojeli & Schleussner (2019) point out that the choice of a particular time horizon for measuring 

emissions has significant implications for the calculation of GWP*, and the arbitrary nature of 

this choice (i.e. 20 years) is a disadvantage for the application of these metrics (Rogelj & 

Schleussner, 2019). 

Meinshausen & Nicholls (2022) highlight that when current emissions are accounted for in 

relation to historic emissions, as in some applications of GWP*, this metric fails to capture the 

contribution to warming as compared to a scenario without those emissions. That is, GWP* 

does not reflect the marginal warming of an emission. Rather, it considers the temperature 

contribution from past emissions (which decreases over time) along with the effect of future 

emissions, which is inappropriate for assessing the climate impact of a particular year or a 

specified period of time (Meinshausen & Nicholls, 2022). 

Moreover, the compatibility with existing climate policy is contested. There are concerns that 

the new metric might be inconsistent with existing policy frameworks, and that this would lead 

to the need of setting new targets: “GWP* would ask countries to start from scratch in terms 

of their political target setting processes: a bold ask to policy makers” (Meinshausen & Nicholls, 

2022). In contrast, the authors who proposed GWP* argue that in the case of SLCP, climate 

warming targets are compatible with stable emission rates because the atmospheric 

concentration does not accumulate if methane emission would be kept within earth’s capacitiy 

to break down methane. For stock gases such as CO2 and N2O, stable emission rates in 

contrast do lead to increased atmospheric concentrations (Lynch et al., 2021). 

6.4.1. Review of case studies 

In this section, we present a short summary of case studies that have used GWP* to assess 

climate impacts of livestock systems (Table 7). In all the analysed papers, the data comes from 

countries or regions where the number of livestock has been reducing in the past years, that 

is Europe, USA and New Zeeland. Therefore, all demonstrate a reduced warming/no additional 

warming. Values calculated with GWP* are lower (sometimes below zero) compared to 

GWP100. Results would be opposite in countries where methane emissions from livestock 

have increased over the last decennia. 

The improvement of farm efficiency is also mentioned as a factor that has led to reduced 

methane emissions and a potential lever to achieve climate neutrality when it is combined with 
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decreases in livestock populations. In some of the papers, the “cooling”/ negative warming 

contribution narrative is present. However, it is not acknowledged that this cooling effect is only 

present because it builds on the reduction of warming that was already created before the 

study period. In the case of the carbon footprinting of beef and sheep done for New Zealand, 

the calculated climate effect from methane emissions using GWP* was negative, but the 

authors chose to represent it as zero. They highlight that there is not yet international 

agreement on how to report this relatively new approach.   

 



Table 7. Overview on case studies using GWP* as a metric to assess climate impacts 

Source Methodology Conclusions 

(Correddu et al., 2023) 
Aim: Recalculating the 
global warming impact of 
Italian 
livestock methane 
emissions with new metrics 

Metrics: GWP100 compared to GWP* 
(Smith et al 2021) of CH4 emissions 
CH4 emissions: enteric fermentation + 
anaerobic digestion of manure. 
Scope: Livestock supply chains 
Time period: 2010 to 2020 
Region: Italy  

Emission rates: Decreasing CH4 emission rates (for total livestock), with an 
average annual variation of -0.5%.  
  
Climate impact: The total cumulative contribution of Italian livestock 
production to global warming over the past 10 years, including the nitrous 
oxide (N2O) emissions, has been negative (-48,759 kt of CO2we) calculated 
with GWP* compared to the data calculated using the GWP100 method 
(+206,091 kt of CO2e). 

(Hörtenhuber et al., 2022) 
Aim: Calculate the effect of 
switching from a GWP100 
to a GWP* metric for the 
product carbon footprints of 
milk, cattle and pig 
carcasses. 

Metrics: GWP100 (IPCC 2014, CH4+N20) vs 
GWP* (Smith et al 2021)   
Emissions data: CH4 (direct, w/o upstream 
processes), N20  
Scope: Livestock (dairy cattle, beef cattle 
and pig) and products (including manure 
mgmt., feed production, electricity use). 
Time period: 1990 to 2019  
Region: Austria 

Emission rates: Large reduction in emissions in dairy cattle and pigs, but not 
in other species. 
  
Climate impact: Reduction by 32% using GWP100 from 1990 to 2019 from 
the dairy sector, but low reduction from other animals and non-dairy cows. 
Climate impacts with GWP* have lower values than with GWP100: the total 
CO2-we is 16% lower for the past 20 y.  
  

(S. Liu et al., 2021) 
Aim: evaluate the actual 
effects of the CH4 emission 
from U.S. dairy and beef 
production on temperature 
and initiate a rethinking of 
CH4 associated with animal 
agriculture. 

Metrics: GWP100 vs GWP* (Lynch et al 
2020) of CH4   
Emissions data: USA: FAOSTAT, 
California: own calculations. 
Scope: US cattle (dairy and beef industry), 
California dairy cows 
Time period: 1981–2017 for USA, 1951-
2017 California 
Region: Country (USA), region (California).  

Emission rates: Decreasing herd population from 1961-2017 reflected in 
decreasing annual emissions, which peaked in 1975.  
  
Climate impact: Since 1990, the annual GWP* for US cattle has been 
decreasing. GWP100 shows an increasingly cumulative impact in which the 
reduction of herd number is not reflected. Conversely, GWP* shows 
decreasing (and negative) CO2-we since 1990. 
“Using GWP*, the projected climate impacts show that CH4 emissions from 
the U.S. cattle industry have not contributed additional warming since 1986. 
Calculations show that the California dairy industry will approach climate 
neutrality in the next ten years if CH4 emissions can be reduced by 1% per 
year, with the possibility to induce cooling if there are further reductions of 
emissions.” 
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(del Prado et al., 2021)  
Aim: Investigate how 
European small ruminant 
dairy systems have 
contributed to global 
temperatures changes in an 
integrated manner and 
illustrate the contrasting 
climate impacts resulting 
from emissions of CH4,CO2 
and N2O using GWP and 
GWP* methodologies 

Metrics: GWP100 (IPCC 2013) vs GWP* 
of N2O, CO2, CH4 
Emissions data: LCA-based  
Scope: Dairy sheep and goats 
Time period: 1990 to 2018 
Region: Europe  
  

Emission rates: Larger expansion of goat dairy systems compared to sheep. 
Reduction in total GHG emissions and a change in GHG emissions profile 
(data obtained by extrapolation): Apparent large reduction in emissions 
intensity per kg of milk from CH4 and N20, but increase in CO2 -derived from 
fossil fuels and land use change). Increased production efficiency. 
  
Climate impact: Warming estimations reflect that the CO2-we metric results 
in lower climate impact than using CO2-e.  
Using GWP*, European sheep and goat dairy sectors have not contributed to 
additional warming in the period 1990–2018 (“dairy goat production has led to 
some level of additional warming into the atmosphere, but these have been 
compensated by larger emission reductions in the dairy sheep sector”). 

 (Pressman et al., 2023) 
 Aim: to compare GWP and 
GWP* based climate 
impact of dairy systems in 
California. 

Metrics: GWP100 (IPCC, 2007) vs GWP* 
(Lynch et al 2020) of CH4   
Emissions data: US EPA Greenhouse Gas 
Inventory and California Air Resources 
Board.  
Scope: US cattle (dairy industry), California 
dairy cows 
Time period: 1950-2017  
Region: Country (USA), region (California).  
  

Emission rates: Increasing methane emissions from livestock between 1950 
and 2008, but decreasing methane emissions between 2008 and 2017. 
  
Climate impact: GWP* estimated higher CO2 warming equivalent emissions 
than GWP during the time period where methane emissions were rising, but 
lower warming equivalent emissions during the period when methane 
emissions were decreasing.  
   

(Mazzetto et al., 2023) 
Aim: Calculate the cradle-
to-grave carbon footprint of 
beef and sheep meat in NZ. 
Compare different GWP 
metrics 

Metrics: different versions of GWP100, 
GTP, GWP* 
Emissions data:  
Scope: NZ sheep and beef meat  
Time period: 2017-2018 
Region: New Zealand  
  

*Emission rates: significant decrease from the methane component due to 
decreased animal numbers, particularly for sheep. For beef, reduction in 
traditional livestock numbers but increase in dairy cows. 
*Climate impact:  
-Sheep: With GWP*, very low contribution due to “zero contribution” from 
CH4. 
-Beef: Larger carbon footprint than sheep with all metrics. Values from GWP* 
were smaller than those calculated with GWP100 but not with GTP100. 
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6.5. When is GWP* useful and when not? 

6.5.1. GWP* may be useful as a simple alternative to a dynamic climate model 

The central argument behind the original GWP* proposal was that GWP does not adequately 

capture the very different roles of long-lived and short-lived GHGs in ambitious mitigation 

scenarios (Allen et al., 2018). Specifically, GWP* was designed to capture the fact that 

emissions of long-lived GHGs need to reach zero for long-term climate stabilization, whereas 

short-lived GHGs do not. Emissions of short-lived GHGs rather affect the available emission 

budget for long-lived GHGs under a given long-term temperature target. This original argument 

for GWP* has wide support in the research community. 

GWP* is, especially after subsequent improvements (Lynch, Cain, et al., 2020) established as 

a simple but useful alternative to a dynamic climate model. For example, Meinshausen & 

Nicholls (2022) noted that “when taken in aggregate and considered as a complete timeseries, 

GWP* emissions are a better predictor of global-mean temperature changes than GWP”. As a 

closing statement, they explicitly positioned GWP* as an alternative to more sophisticated 

climate models: 

 “Let us take GWP* for what it is: A new class of ‘micro climate models’ (MCMs) that should be 

welcomed in the hierarchy of climate models. There are now GWP* and the combined global 

temperature change potential (CGTP) formulas (Collins et al., 2020), which open the door for 

educational tools and various applications, if quick temperature projections are required from 

time series of emissions.” (Meinshausen & Nicholls, 2022) 

As a “micro climate model”, GWP* can be used to evaluate the climate impact of different 

prospective emission scenarios. When considering emission pathways of different GHGs, 

GWP* will more accurately than GWP capture multi-decadal temperature change as it 

accounts for the difference between the cumulative warming of carbon dioxide and the non-

cumulative warming of methane. For example, Clark et al. (2020) used GWP* to relate GHG 

emissions from the global food system under different mitigation scenarios to GHG emission 

budgets compatible with different temperature targets (1.5 and 2 degrees). In the study, the 

GWP* results were compared to what would be obtained using GWP, and this comparison 

demonstrates that results in methane-intensive scenarios can differ very substantially between 

GWP* and GWP. 

However, GWP* is not a universal replacement for other climate models. It does not capture 

all climatic details that more sophisticated models do. Therefore, whether to use GWP* in place 

of a more complex model needs to be decided depending on the application (del Prado et al., 

2023). 
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6.5.2. Using GWP* to calculate the climate impact per unit product (“carbon footprint”) requires zero-
emission baseline 

For some applications, it is necessary to estimate the climate impact per unit product (the 

“carbon footprint”), as an estimate of the climate impact caused by each unit of consumption. 

Examples of such applications include comparisons of the climate impact of different foods for 

purposes such as environmental labelling, environmental taxation (Moberg et al., 2021), or in 

other types of consumer communications (Karlsson Potter & Röös, 2021). This is commonly 

done using LCA methodology in which different GHGs from different life cycle stages (primary 

production, processing, transports etc.) are aggregated using a metric, typically GWP, into one 

carbon footprint.  

A carbon footprint is typically intended as an estimate of the marginal climate impact of 

production/consumption of a product. That is, it is intended to answer the question: what is the 

climate impact of producing this additional unit of product (hence causing some GHG 

emissions) compared to not producing this additional unit (hence causing no GHG emissions)? 

The GWP* metric, if used with a baseline of historical emissions (e.g., emissions from previous 

production from the same farm or production system) is not suitable for this application. A 

simple example clearly demonstrating this is that GWP* values can become negative if short-

lived GHGs like methane have been declining in recent time. Clearly, this negative GWP* value 

would not mean that additional marginal consumption would have a cooling effect on the 

climate. It merely means that the decline in short-lived GHG emissions leads to cooling 

compared to if the short-lived GHG emissions had remained constant. 

More generally, as Meinshausen & Nicholls (2022) put it, “GWP* ... is not a ‘neutral’ metric as 

it weighs emissions differently depending on what the emission history of the country, project 

or facility has been.” One of the results of using GWP* as an indicator per unit product would 

be that a product from the same production system, e.g., meat from a livestock farm, would be 

assigned different footprint values depending on whether the production system is growing or 

shrinking. As an example, if there were two identical farms, one recently growing and another 

one recently shrinking, the meat from the recently growing farm would have higher product 

footprint, even though the two farms, and their annual emissions and production volumes, were 

identical. 

One way of potentially using GWP* for product-level assessments is to use it with a zero-

emission rate as the reference scenario, based on the idea that zero emissions is what would 

result from non-consumption of the product. This type of application was explored by McAuliffe 

et al. (2023). They used GWP* to calculate the time-dependent CO2 warming-equivalent 

impact per unit live weight production in a beef production system. The results presented, 

notably, are not one “footprint” per unit product, but rather a time-dependent “footprint” from 1 

to 100 years after the production emissions take place. This is very roughly equivalent to 

calculating the time-dependent temperature change, i.e., calculating a curve consisting of GTP 

values with time horizons from 1 to 100 years. Indeed, McAuliffe et al. (2023) explicitly position 

their approach as an alternative to using multiple GTP values with different time horizons: 
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“GWP* provides a shorthand approximation of how these change over time, rather than having 

to calculate a full temporal evolution of GTP for every year x." (McAuliffe et al., 2023, p. 9) 

Such a calculation in terms of GTP, rather than GWP*, would be made using a climate model 

(e.g. Persson et al., 2015; Persson & Johansson, 2022).  

The key observation made by McAuliffe et al. (2023) and others is that no single metric 

number can fully account for the time-dependent differences in climate impact between 

products, and therefore a multidimensional “metric” is needed for this purpose. The 

time-dependent CO2 warming-equivalent impact as calculated using GWP* is one among 

several methods that can be used to this end. 

 

6.5.3. What can GWP* bring that could not be delivered by accounting for the different GHGs 
separately? 

Not all applications require the aggregation of different GHGs. Accounting for gases separately 

in emission pathways is the most transparent and completely avoids the use of metrics. 

Much of current climate policy is based on the aggregating GHG emissions using GWP, but, 

e.g., GHG reduction targets can also be set for individual gases. When the IPCC talks about 

what is required to limit climate change, it differentiates between the different gases: 

 “From a physical science perspective, limiting human-induced global warming to a specific 

level requires limiting cumulative CO2 emissions, reaching at least net zero CO2 emissions, 

along with strong reductions in other greenhouse gas emissions.” (IPCC, 2021a). 

That is, the IPCC highlights the need for CO2 emissions to reach net zero, while for other GHGs 

it will suffice with “strong reductions”. Hence, an alternative to aggregating GHG with a metric, 

studies like Clark et al. (2020), or even product level LCA studies, could assess emissions of 

different gases separately and relate them to their individual targets. However, this could add 

complexity to the interpretation and communication of study results. 
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6.6. Recommendations for evaluating climate impacts of 
GHGs in product-based LCA 

6.6.1. Recommendation from other authors  

Report gases separately 

Several authors encourage to report climate impacts of separate GHG, at minimally separating 

them by short-term climate change and for long-term climate change (Allen et al., 2022; Jolliet 

et al., 2018; McAuliffe et al., 2023).  

In the UNEP-SETAC Life Cycle Initiative global guidance (Jolliet et al., 2018), it is argued that 

no single measure can fully capture the contributions of different climate forcing agents to both 

shorter-term and the long-term temperature changes. For short-term climate change (over the 

next decades) GWP100 is suggested, while for long term climate change impacts GTP is. 

Furthermore, a sensitivity analysis (including GWP20) is strongly advised. In line with these 

suggestions, Allen et al., 2022 point out that “the separate specification of individual gases 

minimises ambiguity in determining the climate impact of past emissions”.   

A recent carbon footprint study (McAuliffe et al., 2023) concluded that the selection of impact 

assessment methods has major effects on the interpretation. As major recommendations from 

the study, they encourage LCA practitioners to perform sensitivity analysis by using different 

metrics and reporting SLCP and LLCP separately.  

Use multiple metrics to capture differences between SLCPs and LLCPs 

In addition to using the de facto standard metric GWP100, it is advisable to use climate models 

or metrics capturing the differences between SLCPs and LLCPs, or at least perform sensitivity 

analyses through other metrics and different time frames. This helps to test the robustness of 

results obtained using different metrics. This is especially relevant for agri-food systems, where 

SLCPs are a substantial part of the GHGs (Jolliet et al., 2018; Manzano et al., 2023; McAuliffe 

et al., 2023). 

Several authors have demonstrated the value of using climate models, or tools derived from 

climate models, to assess time-dependent climate impacts. This can be done using a simple 

climate model (e.g., Persson et al., 2015; Persson & Johansson, 2022) or a tool such as GWP*.  

FAO LEAP guidelines (FAO, 2023b) also recognize the difference between pulse-emission 

metrics (e.g. GWP100, GWP20, GTP100, GTP20) and Step-pulse metrics (e.g. GWP*, 

CGTP). Pulse-emission metrics provide information about future climate impacts of emission 

units, as opposed to the absence of those emissions, which are called the “marginal” impacts. 

Step-pulse metrics provide information about “additional” impacts relative to a specified date. 

The guideline suggests using either pulse-emission metrics or step-pulse depending on the 

question posed. They also suggest using multiple metrics to test whether results are consistent 

across different timescales or with respect to different impacts. 

Report different metrics aligned to existing policy contexts 

FAO LEAP guidelines also highlight that since metrics are used as tools by policy makers, it is 

important to consider them within the wider context of the Paris Agreement, definitions of 

climate neutrality, sustainable agriculture and equity considerations.  
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6.6.2. General consideration on GWP 

In formulating recommendations regarding metrics, it is imperative to consider nuanced 
perspectives on GWP. Firstly, it is incorrect to assert that GWP fails to capture dynamics; 
rather, it adeptly captures aggregated warming impacts over a given timeframe (commonly 
100 years). It is crucial to communicate this accurately to avoid misconceptions. Secondly, 
GWP has a couple of clear advantages as a metric: its simplicity makes it easily 
understandable for a broad audience, rendering it an effective tool for conveying complex 
climate concepts; and the wide adoption of GWP100, always using the same reference, 
enables comparison across many scientific studies. 
 

6.6.3. Recommendations for Re-livestock LCA assessments 

No single metric can capture all the relevant differences in climate impact of different gases. 

Moreover, the science and the policy context around climate impacts is continuously evolving. 

Therefore, it is strongly recommended to report greenhouse gas emissions separately by gas 

to the extent possible, since this allows readers to assess the climate impact using any metric 

of choice and/or reassess in the future given new scientific advances (e.g., changed 

characterisation factors). 

For some purposes, a useful simplification of the multi-gas reporting is the so called 2-basket 

approach, distinguishing SLCPs from LLCPs, as proposed by Allen et al. (2022). 

To calculate the carbon footprint of a product, i.e., a one-dimensional indicator of the climate 

impact of marginal consumption/production per unit product, a metric is needed to summarize 

the contribution of different gases. Established metrics such as GWP and GTP with different 

time scales serve distinct purposes, yielding different results. It is therefore strongly 

recommended to use more than one metric, as a sensitivity analysis and to indicate the 

inherently time-dependent nature of climate impacts. This aligns with the perspective 

advocated by Jolliet et al. (2018) as well as del Prado et al. (2023), emphasizing the importance 

of using different metrics to showcase various effects. While GWP100 serves as a de facto 

standard metric, there is a compelling case for incorporating other metrics too. In essence, 

there is no argument against using GWP100, but a strong rationale exists for complementing 

it with alternative metrics, as endorsed by expert recommendations. 

Using GWP* for climate footprints (as an indicator of marginal climate impact per unit product, 

etc.) is discouraged for two principal reasons. The first reason is that the choice of baseline 

has a large effect on results, and that this method detail has proven difficult and confusing for 

many people. This is most clearly demonstrated by examples of GWP* based “footprints” 

showing negative values, which may lead to the mistaken idea that marginal consumption 

would have a cooling effect on the climate. The second reason is that the only appropriate way 

to use GWP* for carbon footprints, namely with a zero-emission baseline (McAuliffe et al., 

2023), has no advantage in principle to a time-dependent application of GTP, which is a more 

established and widely understood metric. By using GTP with a selection of fixed time horizons 

(e.g., the commonly applied GTP20, GTP50, and GTP100), the time-dependent climate 

impacts of different gases are well summarized in the well understood language of temperature 
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units. In this context, the only clear advantage of GWP* (with a zero-emission baseline) is the 

relatively simple calculations involved.  

For some use cases (e.g. when trade-offs between reducing SLCP or LLCP are expected), an 

explicitly dynamic approach is useful as an alternative or a complement to one-dimensional 

carbon footprints. A dynamic approach can help to clearly communicate the difference 

between SLCPs and LLCPs, possibly including trade-offs between short-term and long-term 

warming. In a dynamic approach, climate impact is not reduced to one number, but a time 

series of numbers indicating the climate impact, e.g., as global temperature change potential 

(GTP) or CO2 warming-equivalents (GWP*). For such approaches, it is possible to use a simple 

climate model (e.g., Persson et al., 2015; Persson & Johansson, 2022) or a “micro climate 

model” (Meinshausen & Nicholls, 2022) with GWP* as a good example. 
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7. Conclusions and recommendations 

7.1. Functional units 

The choice of the functional unit can have a strong impact on results and is thus highly 

sensitive. The functional units should be selected depending on the goal and scope of the 

study. In cases where the focus of an LCA is on comparing various products rather than on 

identifying environmental hot-spots within the value chain of a single product, it becomes 

imperative to reflect if the products offer only a single function or if the production systems 

provide different functions to different degrees.  

If large differences in the nutritional values of different products exist (e.g. comparing 

different food products), this should either be reflected in the functional unit or 

otherwise captured in the analysis. Nutritional indices should encompass both qualifying 

(i.e. beneficial) as well as disqualifying (i.e. unhealthy) nutrients. Sensitivity in the results due 

to how a nutrient index is designed should be evaluated. When evaluating similar livestock 

products, the recommended functional units outlined by FAO LEAP (see Table 1), accounting 

for fat or protein content, are advised.  

For multifunctional processes, the recommendation of ILCD should be followed, to give 

one functional unit or reference flow for each function. For example, if very different 

livestock systems (e.g. low and high intensity) are compared in an LCA study, which typically 

show very different levels of provisioning (e.g. meat) and non-provisioning ecosystem services 

(e.g. habitat creation and maintenance), several functional units should be chosen to present 

LCA results. In the simplest case, a functional unit per kg milk or meat should be 

complemented with a functional unit per ha. Expressing impacts per ha provides additional 

information on local environmental impacts, especially if primary impacts are concentrated 

within a specific location, such as the farm. This is most relevant for freshwater and terrestrial 

eutrophication, acidification, or ecotoxicity. This dual perspective provides additional insights 

into the potential adverse effects of intensification on the ecosystems surrounding the farm. If 

feasible, non-provisioning ecosystem services provided by the systems under comparison 

could be quantified and impacts calculated per unit of ecosystem services (e.g. by calculating 

the economic value of provisioning and non-provisioning services). Complementing LCA 

studies with other assessments, such as for example farm-level or territorial sustainability 

assessments, can provide additional information to decision-makers on potential trade-offs 

between different policy goals. 

Within the Re-livestock project, comparisons could be done between a baseline and an 

innovation introduced to that baseline system, rather than comparing across different 

livestock systems. This will illustrate the environmental benefits of an innovation in a 

particular system and avoids comparing high and low intensity systems, which offer very 

different levels of provisioning and non-provisioning ecosystem services. 
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7.2. Biogenic carbon in LCA 

When accounting for biogenic carbon in LCA of agricultural systems, both changes in 

soil organic carbon (SOC) as well as in woody biomass can be relevant. Assessing 

carbon contained in the biomass of grass or annual crops is less relevant (or just reported as 

“biogenic carbon” without climate effect), because it is quickly released again.  

Impacts related to land use change (e.g. from forest to crop land), are typically assessed 

in LCA, e.g. using the IPCC approach. Land use change is often relevant in background 

processes (e.g. for imported feed, when assessing impacts of milk production). For 

deforestation, the challenge is on how to allocate the ongoing deforestation in some world 

regions to agricultural production and single inventories of feed or food. Approaches on how 

to do this allocation are provided by ILCD or IPCC, typically using a 20 year time horizon. For 

traded commodities, Pendrill et al. (2019) provide data on how to allocate deforestation to 

crops.  

For land management change (e.g. avoid ploughing or planting single trees on 

cropland), ILCD recommends to not account for changes in soil carbon or biomass as 

a default, but if specifically required, it can be assessed. Land management change is 

more often in the foreground system of LCA studies. Assessing changes in SOC and biomass 

due to land management change is challenging, because land management can change rather 

quickly, impacts can be very site dependent, and uncertainties in the assessments can strongly 

affect results in the foreground system.  

Existing studies show that LCA results are highly sensitive to the inclusion of SOC. 

Many approaches have been proposed on how to assess SOC changes, but no 

consensus has been reached so far, on which approach should be chosen.  

Several challenges exist to model changes in SOC or biomass in LCAs. First, a 

reference situation or baseline needs to be defined to make sure only carbon 

additionally added to systems by human management is accounted for. When assessing 

biogenic carbon in LCAs, a reference situation should be used, to avoid accounting for carbon 

which is “naturally” stored in systems, and would be stored in soils or biomass even without 

human intervention. This is especially relevant when carbon stock and not changes in stocks 

are assessed. This reference situation can either be the potential natural vegetation (e.g. a 

forest that would establish on unused grassland), a “no use” scenario under the current land 

use (e.g. unused grassland) or the land management preceding the current management (e.g. 

degraded grassland). The choice of reference situation strongly influences results. The 

selection of the reference situation should be in line with the goal and scope of the study and 

should be explicitly stated. Both the reference situation as well as the situation under study 

show temporal dynamics. The assumptions on the dynamics of SOC (e.g. steady state 

assumption) for both the reference as well as the system under study should be made 

transparent and be in line with the goal and scope of the study. For assessing SOC or carbon 

in biomass in LCA, the land use assessment framework (Koellner et al., 2013) can be useful 

to conceptualize temporal changes of SOC or carbon in biomass due to land use or 

management change (land transformation) as well as for maintaining a certain land use or 

management (land occupation).  
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Storage of SOC shows strong temporal dynamics and changing stocks of carbon in 

soils as well as in biomass are mostly reversible. Long-term measurements have shown 

the strong temporal dynamics of soil carbon within and across years. If C inputs are temporarily 

reduced and climate extremes occur, parts of the C stored in soils can be quickly released and 

only parts of the carbon are stored more stable. As a conservative approach, only carbon 

stored over longer periods could be assessed. For example, if the IPCC Tier 2 approach for 

assessing SOC is applied to LCA, only the “passive pool” should be accounted as long-term 

storage. Slow and active pools should to the extent possible be reported separately, as they 

are often released within short time. This deviates from IPCC method for annual national GHG 

inventories, because of the different perspective compared to LCA. While the IPCC 

methodology is intended to provide transparency on the yearly contributions of countries and 

sectors to GHG emissions and their development, LCA takes a product and long-term 

perspective. 

Although the general recommendation of ILCD is to not account for carbon stored less than 

100 years as a default, a shorter-term perspective (e.g. 20 years) could still be relevant to 

elaborate the option-space of farmers or policy-makers. Therefore, a concept is needed to 

separately show the effect of temporal carbon storage on global warming. One option is to 

further test the approach of delayed emissions proposed by ILCD or to directly calculate the 

warming effect over a certain time period. Results of temporally stored carbon should be 

reported separately and the temporal dynamics assumed for the modelling (when is which gas 

emitted/stored) should be made explicit. For carbon in biomass stored for more than 100 years 

(e.g. agroforestry-systems with Spanish oak trees), carbon storage can be fully accounted for. 

Measuring and modelling SOC changes is often uncertain, because it is highly 

dependent on the soil, climate, weather, management, land use history etc. Different 

models provide quite different results. In addition, future climates will most likely strongly 

influence the amount of carbon stored in soils. Therefore, carbon stored in soils or biomass 

should be reported separately from fossil carbon and results interpreted with caution. In 

addition, an uncertainty or sensitivity analysis should, to the extent possible, be performed on 

SOC changes. 

In crop rotations of arable land or temporary grassland, the long-term storage or release 

of carbon needs to be allocated across different crops or even grazing livestock. How 

this allocation is performed (e.g. linearly, temporal, physical, economic allocation) should be 

explicitly mentioned. 

Carbon stored in biomass should be reported separately from carbon in soils and from 

other carbon emissions (e.g. fossil fuels). The methods, time perspectives and 

uncertainties are different and to make results transparent, a separate reporting is highly 

recommended. When carbon storage in woody biomass is accounted for, then the carbon 

released during the use of products (e.g. burning of fuel wood) needs to be considered as well. 

For the innovations assessed within the Re-Livestock project, which affect biogenic 

carbon in soil or woody biomass, changes in carbon stocks should be quantified 

following the recommendations above.  
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7.3. Short and long-lived GHG 

It is important to account for the different atmospheric lifetimes of GHGs in climate 

impact assessment of food systems and food products. This is more relevant for food 

products than many other products because some food products, most importantly ruminant 

livestock products, cause considerable emissions of methane, while many other food products 

mostly cause emissions of nitrous oxide and carbon dioxide. 

It is strongly recommended to report greenhouse gas emissions separately by gas to 

the extent possible, since this allows readers to assess the climate impact using any metric 

of choice and/or reassess in the future given new scientific advances (e.g., changed 

characterisation factors). There is no single metric that captures all the relevant differences in 

climate impact of different gases. Moreover, the science and the policy context around climate 

impacts is continuously evolving. For some purposes, a useful simplification of the multi-gas 

reporting is the 2-basket approach, distinguishing SLCPs from LLCPs, as proposed by Allen 

et al. (2022).  

To calculate the carbon footprint of a product, i.e., a one-dimensional indicator of the 

climate impact of marginal consumption/production per unit product, established 

metrics such as GWP and GTP are recommended. To capture relevant differences between 

long-term and short-term climate impacts, it is strongly recommended to use more than one 

metric (e.g., GWP and GTP) and/or metrics with different time horizons (e.g., GTP20, GTP50, 

and GTP100). 

Using GWP* for climate footprints (per unit product, etc.) is discouraged for two reasons: 

(1) method details around baselines have proven difficult and confusing for many people; and 

(2) GWP* has no advantage in principle over a time-dependent application of GTP, which is a 

more established and widely understood metric. By using GTP with a selection of fixed time 

horizons (e.g., the commonly applied GTP20, GTP50, and GTP100), the time-dependent 

climate impacts of different gases are well summarized in the well understood language of 

temperature units. 

For some use cases, an explicitly dynamic approach is useful as an alternative or a 

complement to one-dimensional carbon footprints. A dynamic approach can help to clearly 

communicate the difference between SLCPs and LLCPs, possibly including trade-offs 

between short-term and long-term warming. In a dynamic approach, climate impact is not 

reduced to one number, but a time series of numbers indicating the climate impact, e.g., as 

global temperature change (GTP) or CO2 warming-equivalents (GWP*). For such approaches, 

it is possible to use a simple climate model (e.g., Persson et al., 2015; Persson & Johansson, 

2022) or a “micro climate model” (Meinshausen & Nicholls, 2022) with GWP* as a good 

example. 

Within the Re-Livestock project, climate impacts should, to the extent possible, be 

assessed with GWP and GTP and the different GHGs should in addition be reported 

separately.  
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