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Abstract 

Background Metabolomics opens novel avenues to study the basic biological mechanisms underlying complex 
traits, starting from characterization of metabolites. Metabolites and their levels in a biofluid represent simple molecu-
lar phenotypes (metabotypes) that are direct products of enzyme activities and relate to all metabolic pathways, 
including catabolism and anabolism of nutrients. In this study, we demonstrated the utility of merging metabolomics 
and genomics in pigs to uncover a large list of genetic factors that influence mammalian metabolism.

Results We obtained targeted characterization of the plasma metabolome of more than 1300 pigs from two popula-
tions of Large White and Duroc pig breeds. The metabolomic profiles of these pigs were used to identify genetically 
influenced metabolites by estimating the heritability of the level of 188 metabolites. Then, combining breed-specific 
genome-wide association studies of single metabolites and their ratios and across breed meta-analyses, we identi-
fied a total of 97 metabolite quantitative trait loci (mQTL), associated with 126 metabolites. Using these results, 
we constructed a human-pig comparative catalog of genetic factors influencing the metabolomic profile. Whole 
genome resequencing data identified several putative causative mutations for these mQTL. Additionally, based 
on a major mQTL for kynurenine level, we designed a nutrigenetic study feeding piglets that carried different geno-
types at the candidate gene kynurenine 3-monooxygenase (KMO) varying levels of tryptophan and demonstrated 
the effect of this genetic factor on the kynurenine pathway. Furthermore, we used metabolomic profiles of Large 
White and Duroc pigs to reconstruct metabolic pathways using Gaussian Graphical Models, which included perturba-
tion of the identified mQTL.

Conclusions This study has provided the first catalog of genetic factors affecting molecular phenotypes 
that describe the pig blood metabolome, with links to important metabolic pathways, opening novel avenues 
to merge genetics and nutrition in this livestock species. The obtained results are relevant for basic and applied 
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biology and to evaluate the pig as a biomedical model. Genetically influenced metabolites can be further exploited 
in nutrigenetic approaches in pigs. The described molecular phenotypes can be useful to dissect complex traits 
and design novel feeding, breeding and selection programs in pigs.

Background
The pig (Sus scrofa) is one of the most economically 
important livestock species, serving as a primary sup-
plier of meat for human consumption. Additionally, it 
is considered one of the most important non-rodent 
biomedical models due to its physiological similarities 
to humans [1]. Specifically, as the pig is a single-stom-
ached omnivore with gut physiology and metabolism 
comparable to humans, it is a valuable model for study-
ing nutrition and metabolic disorders that are relevant 
to humans.

Metabolomics is the study of the plethora of metabo-
lites, which are small biological molecules that act as 
intermediates or end products of chemical reactions in 
an organism [2]. Metabolites represent molecular phe-
notypes (also indicated as metabotypes) that are the 
direct products of the activities of enzymes pertain-
ing to metabolic pathways, including catabolism and 
anabolism of nutrients. The level of a metabolite in a 
biofluid, its uptake, its transfer and its regulatory mech-
anisms are therefore components of a metabotype. 
Therefore, metabotypes are considered simple and 
“internal” phenotypes that can be used to dissect more 
complex “external” phenotypes or end phenotypes [3] 
that have relevant and direct economic values. In pigs, 
production performances (e.g., growth rate, fat deposi-
tion, lean meat deposition, feed conversion rate) are the 
end phenotypes [4]. Metabolic profiles are quite sta-
ble, meaning that their baseline levels are only partially 
affected by environmental perturbations. As a result, 
the heritability of many metabotypes can be quite high, 
providing opportunities to uncover the genetic factors 
responsible for their variation across individuals in a 
population [5].

In humans, the combination of metabolomics for 
blood-derived biofluids and genome-wide association 
studies (GWAS) has already proven successful in iden-
tifying genetic factors that influence metabotypes, also 
known as genetically influenced metabolites (GIM) [6]. 
This information can be used to decipher the genetic 
mechanisms that affect metabolism and to better 
describe other complex physiological conditions and 
diseases [7–10]. Since metabolites offer molecular phe-
notypes that are close to an individual’s genotype pro-
file, a relatively smaller number of individuals (typically 
a few hundred) is required to obtain meaningful results 
than would be needed in a GWAS for more complex 

phenotypes [11]. Genetically influenced metabolites 
identified in humans have been shown to generally have 
greater effect sizes than most other complex traits and 
diseases and can be explained by loci that are often 
located in or near genes that encode enzymes, metab-
olite transporters, and regulators of metabolism [7, 8, 
11].

A few studies have reported preliminary characteriza-
tions of the livestock metabolomes by investigating dif-
ferent biofluids for various purposes [4, 12]. These studies 
focused primarily on specific questions about the physi-
ological and health status of the animals and the effects of 
feeding on their metabolic patterns, leading to the identi-
fication of some biomarkers that are useful for monitor-
ing and diagnostic purposes (e.g., [13–17]). Other studies 
have investigated how genetic factors can influence ani-
mal metabolomes. Initial studies focused on breed differ-
ences in metabolomic profiles and later studies defined 
how genomic variants are associated with the levels of 
certain metabolites in plasma, serum, milk, and in vari-
ous tissues [18–24].

In this study, we demonstrated the utility of merg-
ing metabolomics and genomics in pigs to uncover 
some of the genetic factors that influence mammalian 
metabolism. We obtained a targeted characterization of 
the plasma metabolome for two different Western pig 
breeds, Large White and Duroc, using sib-tested ani-
mals, reared in standard environments. We then used the 
metabolomic profiles of these pigs to identify GIM (i) by 
estimating the heritability of metabolite levels, (ii) identi-
fying genomic regions associated with metabolite levels 
(defined as metabolite Quantitative Trait Loci or mQTL) 
through GWAS, (iii) performing systems biology analyses 
of metabolic pathways, and (iv) constructing a human-
pig comparative catalog of genetic factors influencing the 
metabolomic profile. Additionally, we designed a nutrige-
netic study based on a major mQTL to further validate 
its effects. Considering that many metabolites are rel-
evant in animal nutrition, this study may open important 
opportunities for using GIM to integrate genetic infor-
mation into pig nutrition.

Methods
Large White and Duroc pigs, blood collection and liver 
samples
A total of 920 Large White pigs (303 castrated males and 
617 gilts, obtained from 86 boars and 358 litters) and 389 
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Duroc pigs (120 castrated males and 269 gilts, obtained 
from 66 boars and 189 litters) were sampled across 26 dif-
ferent slaughtering days. The animals were from triplets 
of siblings from the same litter, consisting of 2 females 
and 1 castrated male. These pigs were individually per-
formance tested at the Central Station of the National 
Pig Breeder Association (ANAS) for genetic evaluation 
of a boar from the same litter (sib-testing). Pigs started 
their performance evaluation at 30–45  days of age and 
continued until they reached a live weight of 155 ± 5  kg 
[25]. All animals were fed the same standard commercial 
feed for fattening pigs, following the production rules of 
the Parma and San Daniele dry-cured ham consortia. At 
the end of the evaluation, the animals were transported 
to the same commercial abattoir, where they were slaugh-
tered in the morning (07.00–08.00 a.m.), following stand-
ard procedures, including a 12-h overnight fasting period 
and the use of electrical stunning.

For each pig, 2 aliquots of blood were collected at the 
abattoir just after jugulation, directly from the drain-
ing carotid artery into a tube with ethylenediamine-
tetraacetic acid (EDTA) to prevent coagulation for the 
preparation of plasma (Vacutest Kima, Padua, Italy). 
After collection, blood samples were refrigerated on ice 
for 2 h. One aliquot was then stored at − 20 °C for subse-
quent DNA extraction. The other aliquot was used for the 
preparation of plasma after centrifugation at 3000  rpm 
for 10 min at + 4 °C. The plasma was then divided in sev-
eral additional sub-aliquots that were stored at −  80  °C 
for metabolomic analysis. At the abattoir, liver samples 
were collected from the same pigs and immediately fro-
zen in liquid nitrogen. These samples were then stored at 
− 80 °C.

Whole genome genotyping and data filtering
DNA was extracted from blood samples stored at − 20 °C 
using the Wizard Genomic DNA Purification kit (Pro-
mega Corporation, Madison, WI, USA). All Large White 
and Duroc pigs were then genotyped with the Illumina 
PorcineSNP60 BeadChip v.2 (Illumina Inc., San Diego, 
CA, USA), which analyzes 61,565 single nucleotide pol-
ymorphisms (SNPs). This SNP panel was also used to 
genotype the piglets included in the nutrigenetic lon-
gitudinal study (see below). Genotyping data were fil-
tered using PLINK v.1.9, discarding animals with a call 
rate < 0.9 and SNPs with a call rate < 0.95, minor allele fre-
quency (MAF) < 0.05, and Hardy–Weinberg equilibrium 
P < 0.001, and SNPs that are located on sex chromosomes 
or not uniquely mapped on the Sscrofa11.1 genome ver-
sion [26].

Targeted metabolomics and data cleaning
Metabolomics measurements of plasma metabolites were 
carried out using the Biocrates AbsoluteIDQ p180 Kit 
(Biocrates Life Science AG, Innsbruck, Austria), which 
allows for the quantification of a panel of 186 metabolites 
(or 188  metabolites, based on a subsequent upgrade), 
including 21 amino acids, 19 (or n. 21) biogenic amines, 
1 hexoses’ pool, 40 acylcarnitines, 15 sphingomyelins, 76 
phosphatidylcholines, and 14 lysophosphatidylcholines. 
The list of all metabolites with the full biochemical name 
and abbreviation is in Additional file 1: Table S1. The ana-
lytical platform consisted of a Serie 200 HPLC system 
(PerkinElmer, Waltham, Massachusetts, USA) coupled 
with an API 4000 QTrap mass spectrometer (AB-Sciex, 
Foster City, CA, USA). Plate preparation followed the 
manufacturer’s instructions (Biocrates Life Sciences AG). 
In house quality controls, obtained by pooling equal vol-
umes of plasma from 10 randomly chosen and unrelated 
pigs, were included in each of the 19 analyzed plates. 
The analytical process was carried out using the MetIQ 
software package, which is an integral part of the Abso-
luteIDQ p180 Kit (Biocrates Life Science AG). Concen-
trations of the analyzed metabolites were reported in μM 
units.

Data quality control was carried out as previously 
described [27]. In summary: (i) metabolites with all miss-
ing values (NA) or all zero values in at least one plasma 
pool were excluded; (ii) samples were identified as outli-
ers if measured concentration for the sample deviated 1.5 
times the interquartile range below or above the corre-
sponding median for > 30% of the analyzed metabolites; 
(iii) animals with a missing value for at least one of the 
analyzed metabolites were eliminated; and (iv) metabo-
lites with an inter-plate coefficient of variation < 30%, 
as estimated by the in-house quality controls, were 
removed. Subsequently, for each metabolite, zero val-
ues were imputed using random values generated from a 
uniform distribution ranging from zero to the minimum 
non-zero measured concentration.

The metabolomics and genomics data were merged, 
resulting in a final dataset for Large White pigs that 
included 787 animals (256 castrated males and 531 
gilts) × 169 metabolites × 45,423 SNPs, whereas for Duroc 
pigs the dataset included 286 animals (87 castrated males 
and 199 gilts) × 164 metabolites × and 38,631 SNPs. 
Ratios between metabolite concentrations were also cal-
culated, resulting in 14,196 and 13,366 ratios for Large 
White and Duroc breeds, respectively.

Data were processed in the R v.4.2.2 [28].

Metabolomics data processing
For GWAS, the Large White and Duroc datasets were 
processed separately, using the R v.4.2.2 using the 
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function “boxcox” of the “MASS” package [28]. Briefly, 
data were normalized using a Box-Cox transformation 
(in a regression model) and then cleaned using linear 
regression models to remove the effects of systematic 
environmental and technical factors, as previously 
described [27]. For Box-Cox transformation, selection of 
the λ parameter followed a grid search (3001 tested val-
ues in the range [− 3, + 3]) using maximum likelihood for 
a regression model that included sex, carcass weight, and 
blood collection date. To remove the effects of system-
atic environmental and technical factors, Box-Cox trans-
formed data were regressed on covariates (fixed effects: 
animal sex, animal carcass weight, and blood collection 
date) and residuals were obtained for GWAS, using the 
following model:

where yi is the level of the metabolite for the ith animal, 
β0 is the intercept term, wi indicates the carcass weight 
of the ith animal, si is a dummy variable representing the 
sex of the ith animal, di1,…,di(J-1) is a set of J = 26 dummy 
variables coding the blood collection date for the ith ani-
mal, while βw, βs and βCj are the corresponding regres-
sion coefficients, and εi is the residual. Metabolite levels 
adjusted for confounding effects were obtained by esti-
mating the residuals as:

with:

where b0, bw, bs, bCj (j = 1,…, J−1) are the least squares 
estimates of model parameters.

For network generation, data were processed as 
described above but using a common λ value to normal-
ize the entire metabolic profile. This common λ value was 
that which was shared by most metabolites based on the 
set of λ values within the 95% confidence interval of each 
tested λ value. Then, the transformed data were regressed 
on covariates as described above (Eqs. (1)–(3)) and resid-
uals were obtained.

Data were processed both separately for each breed 
and combined across breeds. For the combined dataset, 
breed was added as a covariate in Eq. (1).

GWAS, meta‑GWAS and heritability estimation
We carried out breed specific GWAS and then subjected 
the results to meta-analysis. Association studies were 

(1)yi = β0 + βwwi + βssi +

J−1∑

j=1

βCjdij + εi,

(2)ei = yi − ŷi,

(3)ŷi = b0 + bwwi + bssi +

J−1∑

j=1

bCjdij ,

based on the additive genetic model. Using GEMMA 
v.0.94.1, we implemented a univariate linear mixed 
effect model that accounted for population stratifica-
tion through the generation and inclusion of a centered 
genomic relationship matrix (K) [29]. The following lin-
ear mixed effect model was adopted:

where y (n × 1) is a vector containing the metabolite level 
for the n animals (residuals of the normalized metabolite 
level; Eq.  (1) to Eq.  (3)), W (n × k) is a covariate matrix 
with k = 1 (a column of 1  s) and α is the k-dimensional 
vector of covariate effects, x (n × 1) is the vector contain-
ing genotypes for the ith SNP (coded as 0, 1, 2, accord-
ing to the number of copies of the minor allele), β is the 
additive fixed effect of the ith SNP on the metabolite lev-
els, g ~ N(0, σ2

g K) is a multivariate Gaussian polygenic 
effect, with covariance matrix proportional to the rela-
tionship matrix K (n × n), and e ~ N(0, σ2

e I) is a multi-
variate Gaussian vector of uncorrelated residuals. The 
assessment of the association between each SNP and the 
metabolite level was obtained by testing the null hypoth-
esis  H0: β = 0 using the Wald test. GWAS results were 
processed in the R v.4.2.2 environment to generate Man-
hattan plots [28]. The percentage of variance explained 
(PVE) by a given SNP was calculated as described in Shin 
et al. [30]. Briefly, PVE was estimated as follows:

where: β̂  , se(β̂  ), and MAF are, respectively, the effect size 
estimate, the standard error of the effect size estimate, 
and the minor allele frequency of a given SNP. N repre-
sents the sample size.

Significant associations in single metabolite GWAS 
were detected by adopting a linkage disequilibrium (LD)-
based Bonferroni correction to identify suggestive asso-
ciations (assuming a level of α = 0.05 and a number of 
independent tests equal to the number of SNPs with an 
LD r2 < 0.25 [31]). Determination of LD was carried out 
as described in Monir and Zhu [31] using PLINK v.1.9 
[26]. This analysis returned 23,076 and 13,269 independ-
ent SNPs for Large White and Duroc pigs, respectively. 
Significance of metabolite ratios for GWAS considered 
the p-gain statistics, estimating the critical level for the 
p-gain (threshold) as 10 times the number of tested ratios 
(assuming a level of α = 0.05) [32].

GWAS results were then combined in a meta-analysis 
(meta-GWAS) using the weighted Z-score model imple-
mented in Metal software (release 2011) [33]. The model 
considered the direction of effect (β) and P-value of the 
association of a given SNP that was obtained for each 

(4)y = Wα+ xβ + g + e,

(5)

PVE =
2β̂2 ×MAF× (1−MAF)

2β̂2 ×MAF×
(
1−MAF

)
+ (se(β̂))

2
× 2N×MAF× (1−MAF)

,
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breed by combining them with weights based on the 
sample sizes. The Bonferroni corrected hypothesis test 
for association with a given metabolite accounted for the 
31,007 SNPs that were shared and tested in both breeds, 
whereas the LD-based Bonferroni correction accounted 
for 20,200 independent SNPs. The critical level for p-gain 
in meta-GWAS of metabolite ratios was set at 10 times 
the number of tested ratios (assuming a level of α = 0.05).

Narrow sense heritability, based on pedigree records 
of a total of four generations  (h2

P), was estimated using 
the R package “gap” v.1.5-3. For this estimation, we used 
Eq.  (4) including a kinship matrix. Genomic heritability 
 (h2

SNP) was estimated from the univariate linear mixed 
effect model (Eq.  (4)) including a genomic relationship 
matrix, as implemented in GEMMA v.0.94.1 [29].

Annotation of GWAS results
Distinct mQTL regions on the same chromosomes were 
declared when significant SNPs (identified as described 
above, combining the different approaches) were sepa-
rated by non-significant SNPs for a region of at least 1 
Megabase (Mb) in the same breed(s) in which the mQTL 
were identified (considering the high level of LD in these 
pig populations) [34, 35]. When an mQTL was identified 
in different breeds and for different metabolites, we con-
sidered a distance of 0.5 Mb. The most significant SNP-
metabolite pair (or ratio, considering the p-gain) was 
then used to identify the corresponding mQTL.

GWAS results were annotated by retrieving the set 
of annotated protein coding genes located in the ± 500-
kb flanking regions of the significant SNP from the 
Sscrofa11.1 National Center for Biotechnology Informa-
tion’s (NCBI) GFF file. Functional relevance of genes was 
evaluated by detailed analysis of the scientific literature, 
the Gene Cards database, and known metabolite-gene 
associations retrieved from the GWAS Catalog, PhenoS-
canner V2, KEGG, HMDB, and PubChem Chemical Co-
occurrences in Literature database [36–41].

Whole genome resequencing, variant calling and linkage 
disequilibrium analyses
A total of 88 Large White, 35 Duroc and 35 Lan-
drace pigs underwent whole genome resequencing 
at ~ 20 ×, with individual DNA extracted using the pro-
tocol described above. The Large White and Duroc pigs 
were a subset of the performance tested pigs described 
above, chosen including pigs from different litters. The 
Landrace pigs were other performance tested animals 
provided by ANAS (these pigs were not used for metab-
olomic analyses). The inclusion of Landrace pigs was 
specifically for comparative analyses with the other two 
breeds for the chromosome region that includes a major 
mQTL, as described later. Genomic DNA was extracted 

and purified as described by Bovo et  al. [25] Sequenc-
ing libraries were produced (150-bp paired ends; 400-
bp insert size) and sequenced on a BGISeq500 machine. 
Reads were mapped on the Sscrofa11.1 reference genome 
using the BWA v.0.7.17 and then deduplicated with Pic-
ard v.2.1.1 (https:// broad insti tute. github. io/ picard/) 
[42]. Variant calling and filtering were performed using 
GATK4 haplotypecaller and variantfiltration (hard-
filter; basic filtering thresholds for SNP and insertions/
deletions or indel, as recommended in the manual), 
respectively [43]. Only bi-allelic variants located within 
the ± 500-kb flanking regions of each significantly associ-
ated SNP were retained for further analyses. Allele fre-
quencies were then estimated for each population. The 
Variant Effect Predictor (VEP) tool was utilized to map 
gene positions and predict the effect of each variant (in 
conjunction with the SIFT tool for assessing potential 
deleterious effects of missense variants on translated pro-
teins) [44]. Subsequently, LD analyses were carried out 
between the SNPs identified in the GWAS (mQTL) and 
the variants found in the candidate genes. These analyses 
were carried out separately for each breed using PLINK 
v.1.9 [26].

Identification and analyses of variants in the kynurenine 
3‑monooxygenase (KMO) gene for a major mQTL
Haplotype information for the KMO gene was recon-
structed using whole genome resequencing data obtained 
from the whole genome sequence of the Large White, 
Duroc, and Landrace pigs described above. Two major 
haplotypes were identified and named based on the two 
alleles of the lead SNP (rs81278711-A and rs81278711-G) 
associated with the level of plasma kynurenine, as deter-
mined in the GWAS. The whole genome resequence data 
was also used to obtain allele frequencies in the same 
breeds.

Whole genome sequencing datasets produced from 20 
different DNA pools were obtained from Bovo et al. [45], 
each containing DNA of 30–35 pigs, representing 19 dif-
ferent European local pig breeds (Alentejana and Bísara 
from Portugal; Majorcan Black from Spain; Basque and 
Gascon from France; Apulo-Calabrese, Casertana, Cinta 
Senese, Mora Romagnola, Nero Siciliano and Sarda from 
Italy; Krškopolje pig from Slovenia; Black Slavonian and 
Turopolje from Croatia; Moravka and Swallow-Bellied 
Mangalitsa from Serbia; Schwäbisch-Hällisches Schwein 
from Germany; Lithuanian indigenous wattle and Lithu-
anian White old type from Lithuania), as well as a Euro-
pean wild pig population. Polymorphisms in the KMO 
gene region were identified and annotated as described 
previously. Allele frequencies at the polymorphic sites 
were estimated by counting the number of reads that 
cover the variant positions.

https://broadinstitute.github.io/picard/
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Using KMO missense polymorphisms identified from 
whole genome sequence of the Large White, Duroc, and 
Landrace pigs and of the DNA pools, we evaluated sin-
gle amino acid polymorphisms in relation to both (i) the 
KMO protein sequence through an analysis based on 
InterPro (ii) and the KMO protein structure, based on 
the model retrieved from the SwissModel repository [46, 
47].

Genotyping data for the KMO exon 17 
indel (that adds/eliminates one amino acid; 
g.12489135_12489136insACC) in the piglets included 
in the longitudinal nutrigenetic study (see below) was 
obtained by Sanger sequencing of a 414  bp amplicon 
produced by PCR amplification using primers designed 
on exon 17 of the same gene (forward: 5ʹ-CAG GAC TTC 
AGC TAG TGG TCA-3ʹ; reverse: 5ʹ-ATT TTG ATC CTG 
TTT TGG TCAC-3ʹ). PCR was performed on an Applied 
Biosystem SimpliAmp Thermal Cycler (Thermo Fisher 
Scientific Inc., Waltham, MA, USA) in a total reac-
tion volume of 14 µL including: 2 × Kapa Hifi HotStart 
ReadyMix PCR kit (Kapa Biosystems, Boston, MA, USA); 
20–50  ng of template DNA; 10  pmol of each primer. 
PCR profile was as follows: an initial denaturation step at 
95 °C for 5 min; 35 cycles of alternate temperatures (30 s 
at 95 °C, 30 s at 60 °C; 30 s at 72 °C) followed by a final 
extension step at 72 °C for 5 min.

Pigs included in the longitudinal nutrigenetic study 
and analysis of kynurenine pathway metabolites
A total of 16 weaned Large White × Landrace crossbred 
piglets were included in the nutrigenetic experiment. 
Genotyping data for these piglets derived from the Illu-
mina PorcineSNP60 BeadChip v.2 (Illumina Inc.; see 
above). Eight of these piglets were homozygous for the 
rs81278711-A allele and the exon 17 deletion, while the 
other 8 were homozygous for the rs81278711-G allele 
and for the exon 17 insertion. These piglets came from 
4 different litters, with the alternative genotypes evenly 
distributed within each litter (2 + 2). The piglets were 
weaned at 28  days of age (day 0 of the trial, with aver-
age bodyweight = 6.825 ± 1.690  kg) and then penned in 
individual cages. Throughout the experiment, unless 
otherwise specified, all piglets were fed a standard post-
weaning diet, ad  libitum. The diet was formulated to be 
slightly deficient compared to the NRC 2012 feeding 
requirements, but adequate for the European standards, 
and without antimicrobial additives or pharmaceuticals 
[48]. More specifically, the diet was formulated to con-
tain a 16.5% standard ileal digestible Trp to Lys ratio, a 
value marginally low, kept to emphasizing the potential 
effects of KMO genotypes and the subsequent addition 
of Trp to the diet. Information on the diet and related 
amino acid content is available in Additional file 2: Tables 

S2, S3. On day 7, all piglets (with an average bodyweight 
of 7.04 ± 1.71 kg) had their first blood sample taken after 
the morning meal. They were then fed the next meal, 
which contained a quantity of Trp equal to twice the 
required amount by doubling the supplementation com-
pared to the basic diet. After 3 h, a second blood sample 
was collected. All blood samples were obtained through 
venipuncture in the vena cava, collected in EDTA tubes, 
which were then centrifuged at 3000×g for 10  min at 
4  °C. Plasma samples were aliquoted and then stored 
at −  80  °C for subsequent targeted metabolomic analy-
ses, using an LC–MS/MS platform at Bevital SA (Ber-
gen, Norway) to quantify several key metabolites of the 
kynurenine pathway [see Additional file  3: Figure S1], 
as previously described: tryptophan (Trp), kynurenine 
(KYN), 3-hydroxykynurenine (HK), kynurenic acid (KA), 
xanthurenic acid (XA), anthranilic acid (AA), 3-hydroxy-
anthranilic acid (HAA), and quinolinic acid (QUIN) [49]. 
The piglets were sacrificed on day 10 with an intracardiac 
injection of  Tanax® (0.5  mL/kg bodyweight) after being 
anesthetized with Zoletil 100 (15  mg/kg bodyweight). 
Liver samples were then collected, immediately frozen 
in liquid nitrogen and stored at −  80  °C for subsequent 
analyses.

Mathematical modelling of the kynurenine pathway (KP)
Levels of KP metabolites between the two KMO geno-
types (as derived from the nutrigenetic experimental 
design) were compared using the Wilcoxon Rank Sum 
Test. Results with P < 0.05 were considered statistically 
significant [see Additional file  2: Tables S4]. The KP 
metabolite levels were further analyzed using a kinetic 
modeling approach based on a set of ordinary differential 
equations (ODE). The model took all reactions mediated 
by enzymes endowed with a Michaelis–Menten kinetics 
into account and all the enzymes operating in their first-
order regime. In this model, each reaction was described 
with a reaction rate (velocity) defined as:

provided that [S] ≪ KM , where KM indicates the Michea-
lis-Menten constant (affinity for the substrate), vmax is the 
maximal velocity and [S] is the substrate concentration. 
Considering the dependence from the enzyme levels, this 
equation can be rewritten as:

where kcat identifies the turnover number and [E] is the 
total amount of enzyme. Based on the reactions scheme 
shown in Additional file 3: Figure S1, we set up a system 

(6)v =
vmax · [S]

KM + [S]
≈ k · [S],

(7)v =
kcat

KM
· [S] · [E],
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of ODE [see Additional file 2: Table S5] that describes the 
levels of KP metabolites at the steady states [see Addi-
tional file  2: Table  S6]. The 3-hydroxykynurenine (HK) 
levels did not present any difference in concentration 
between the 2 KMO genotypes (P > 0.05), allowing us to 
assume the following equivalence:

Considering the study of metabolites at the steady state, 
we can express the dependence of HK concentrations as a 
function of Trp concentrations as:

where each k represents a kinetic constant specific for 
each enzyme entering the KP route. Under the hypoth-
esis that only kKMO is different in the 2 pig groups, the 
Eq. (8) and Eq. (9) can be combined, and the equivalence 
can be simplified and expressed as:

This implies that equal levels of 3-hydroxykynurenine 
are maintained only if kKMO ≫ kKYNU1 + kKAT1 (and 
considering equal enzyme concentrations). As these con-
stants are not available for porcine enzymes, we relied 
on values derived in humans by Stavrum et al. [50] [see 
Additional file  2: Table  S7] that confirmed this inequal-
ity (kKMO = 22   s−1   mM−1, kKYNU1 0.46   s−1   mM−1 and 
kKAT1 = 2.08   s−1   mM−1). Considering that kKMO =

kcat
KM

 , 
changes in vKMO can be attributed to changes in affinity 
for the substrate (KM), or to the turnover number (kcat), 
or to the total amount of enzyme ([E]).

Quantitative real time PCR (qPCR) and Western blotting 
analyses of KMO
Total RNA was extracted from liver samples of the 16 
piglets in the longitudinal nutrigenetic study (8 piglets 
homozygous for the rs81278711-A allele and 8 homozy-
gous for the rs81278711-G allele), as well as from an 
additional 8 Large White pigs that were used for metabo-
lomic analyses with the Biocrates AbsoluteIDQ p180 Kit 
(Biocrates Life Science AG; see above): 4 gilts for each of 
the two homozygous genotypes that were all slaughtered 
on the same day (description of these pigs and their diet 

(8)[HKss
rs81278711−GG] = [HKss

rs81278711−AA].

(9)

[
HKss]

=
kKMO · [KYN]

kKYNU2

=
kTDO/IDO

kKYNU2 + kKAT2

·
kKMO

kKYNU1 + kKMO + kKAT1
· [Trp],

(10)

krs81278711−GG
KMO

(kKYNU1 + kKAT1 + krs81278711−GG
KMO )

=
krs81278711−AA
KMO

(kKYNU1 + kKAT1 + krs81278711−AA
KMO )

.

is reported above). The RNA was reverse transcribed 
and used for qPCR of KMO, with beta-2-microglobulin 
(B2M) serving as the housekeeping gene. qPCR reactions 
were performed in triplicate for each sample using the 
Kapa SYBR Fast qPCR Master Mix kit (Kapa Biosystems, 
Roche, Basel, Switzerland) on a QuantStudio 7 instru-
ment (Thermo Fisher Scientific, Waltham, MA, USA). 
Average Cts were calculated for the pigs with the two 
KMO genotypes and the relative gene expression was cal-
culated as  2−∆∆Ct for each experimental design.

Proteins were extracted from the liver tissues of the 
same pigs, with 3 technical replicates for each sample. A 
total of 20 µg of proteins was separated by Sodium Dode-
cyl Sulphate—PolyAcrylamide Gel Electrophoresis (SDS-
PAGE) using 12% polyacrylamide resolving gels with a 
4% stacking gel (Gibco BRL/Thermo Fisher Scientific) 
for each sample. The proteins were electrophoretically 
transferred to 0.45 µm PVDF membranes and then incu-
bated overnight at 2–8  °C with the primary Anti-KMO 
antibodies (Abcam, UK, ab130959) at a concentration of 
2 µg/mL. After washing, the membranes were incubated 
with the secondary antibody. Subsequently, membranes 
were scanned, and the average band density was normal-
ized to the average band density. Additional details on 
qPCR, Western blotting analyses and the results obtained 
are provided in Additional file 4: Text S1.

Correlation networks and Gaussian graphical models
Metabolomic data from the Large White and Duroc pigs 
were used to assess the dependence between metabo-
lite concentrations through Gaussian Graphical Mod-
els (GGM), which are undirect probabilistic graphical 
networks that estimate the conditional dependence 
structure among variables [12, 49]. GGM are based on 
partial correlation coefficients (PCC), which are pair-
wise Pearson’s correlation coefficients (r) corrected for 
all remaining variables. For comparison of the results, we 
calculated both simple Pearson’s correlation coefficients 
and full-order partial correlations by a matrix inver-
sion operation. GGM were constructed both for each 
breed separately and for the combined breeds. Because 
Large White and Duroc had different numbers of ani-
mals evaluated (787 and 286, respectively), potentially 
affecting the estimation of PCC and the related statisti-
cal significance, 2 metabolites were considered linked if 
they had a PCC > 0.3 [7]. Additionally, a GGM was con-
structed separately for each breed, incorporating the 
genetic effects of the specific mQTL that were identified 
in the meta-GWAS for that breed. Briefly, metabolites 
were also regressed against the identified SNPs (coded as 
dummy variables) and then simple Pearson’s correlations 
and PCC were calculated. PCC were computed with the 
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package R package ppcor v1.1. The networks were visual-
ized using Cytoscape v.3.0.1 [51].

Results
Metabolites have a broad range of heritability in pigs
We produced targeted plasma metabolomic profiles, 
including metabolites from six analyte classes [acylcar-
nitines, AC; amino acids, AAc; biogenic amines, BA; 
hexoses (including glucose), HE; glycerophospholip-
ids (including phosphatidylcholines, PC; and lysophos-
phatidylcholines, lysoPC); and sphingomyelins, SM; see 
Additional file  1: Table  S1], in Large White and Duroc 
breeds. We estimated the narrow sense heritability  (h2

P) 
of these metabolites using mixed linear models with 

pedigree data and then compared this information with 
the genomic heritability  (h2

SNP), estimated using geno-
typing data obtained from a 60 k SNP panel (Fig. 1a–d; 
see Additional file 2: Table S8). The heritability estimates 
averaged by metabolite class is reported in Table 1. Herit-
abilities estimated using the two  approaches were simi-
lar, with average values across breeds of 0.22 ± 0.15  (h2

P) 
and 0.19 ± 0.13  (h2

SNP). The highest heritability estimates 
were observed in Large White pigs for phosphatidylcho-
line PC aa C40:5  (h2

P = 0.69 ± 0.10,  h2
SNP = 0.52 ± 0.06) 

and in Duroc pigs for PC aa C38:6  (h2
P = 0.73 ± 0.16, 

 h2
SNP = 0.58 ± 0.12) and PC aa C40:6  (h2

P = 0.60 ± 0.16, 
 h2

SNP = 0.63 ± 0.11). When heritability estimates were 
related to the number of carbon atoms and double 

Fig. 1 Heritability estimate profiles of different groups of metabolites in the two breeds. a Genomic heritability  (h2
SNP) in Large White pigs. b 

Genomic heritability  (h2
SNP) in Duroc pigs. c, d Scatter plots correlating narrow sense heritability  (h2

P) and genomic heritability  (h2
SNP) in Large White 

and Duroc pigs, respectively (Pearson’s correlation between the two measures of heritability were 0.90 in Large White and 0.76 in Duroc). All details, 
including information on  h2

P, are reported in Additional file 1: Table S8

Table 1 Estimates of pedigree-based heritabilities  (h2
P) and of genomic heritabilities  (h2

SNP) of different metabolite classes in the Large 
White and Duroc breeds

The mean and standard deviation are reported
a His, Ile, Leu, Lys, Met, Phe, Thr, Trp, Val
b Ala, Arg, Asn, Gln, Glu, Gly, Pro, Ser, Tyr

Metabolite classes Large White Duroc

h2
P h2

SNP h2
P h2

SNP

Amino acids 0.241 ± 0.079 0.238 ± 0.055 0.097 ± 0.095 0.145 ± 0.100

Essential amino  acidsa 0.221 ± 0.078 0.211 ± 0.041 0.067 ± 0.080 0.108 ± 0.088

Nonessential amino  acidsb 0.249 ± 0.078 0.242 ± 0.042 0.097 ± 0.091 0.162 ± 0.102

Acylcarnitines 0.054 ± 0.066 0.063 ± 0.073 0.080 ± 0.118 0.056 ± 0.089

Biogenic amines 0.192 ± 0.108 0.234 ± 0.128 0.210 ± 0.151 0.245 ± 0.131

Glycerophospholipids 0.300 ± 0.136 0.277 ± 0.112 0.192 ± 0.156 0.172 ± 0.127

Sphingomyelins 0.331 ± 0.108 0.280 ± 0.074 0.207 ± 0.121 0.217 ± 0.085

Sugars 0.290 0.069 0.262 0.020
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bounds of 3 analyzed metabolite classes (acylcarnitines, 
glycerophospholipids and sphingomyelins), some corre-
lations emerged [see Additional file 3: Figures S2 and S3]. 
Other details on the relationship between the metabolite 
chemical structure and their heritability estimates are 
reported in Additional file 4: Text S2. 

GWAS for metabolite traits in pigs identified numerous 
mQTL
We initially conducted GWAS for the concentration of 
the analyzed metabolites separately in Large White pigs 
and Duroc pigs, followed by a combined meta-analysis. 
In Large White pigs we identified significant associations 
for 56 metabolites (accounting for 68 association signals, 
totaling 33 different mQTL) and in Duroc pigs for 22 
metabolites (accounting for 25 association signals, total-
ing 24 different mQTL) (see Table 2 and Additional file 1: 
Table  S9). Nine metabolites showed significant asso-
ciations in both breeds: for 6 of these, different mQTL 
were identified in the 2 breeds, while for the other 3 
metabolites, the same locus was identified in both breeds 
(Fig.  2a). The meta-analysis provided associations for 
a total of 42 metabolites with 48 different associations 
across 26 mQTL. Among these associations, 14 were 
found to be novel in the combined dataset (Fig.  2a; see 
Additional file 1: Table S10), while 26, 5, and 3 were also 
identified in, respectively, the Large White, the Duroc, 
and in both breeds (Table 2).

Summarizing the results of these three GWAS, associ-
ated SNPs were identified for ~ 46% of the investigated 
metabolites, totaling 63 different mQTL. Multiple loci 
were identified for 23 metabolites (up to 4 for citrul-
line). One locus on Sus scrofa chromosome (SSC) 6, one 
on SSC7, and one on SSC12 were associated with the 
concentration of 13 glycerophospholipids (all in Large 
White pigs and meta-analysis), 6 glycerophospholipids 
(identified in meta-analysis and Large White pigs), and 
11 glycerophospholipids (one also in Duroc pigs), respec-
tively. On average, the percentage of variance explained 
(PVE) for the peak SNP underlying the identified mQTL 
was 5.45 ± 3.40%, with higher values observed in Duroc 
(mean = 9.45 ± 3.51%) compared to Large White pigs 
(mean = 4.26 ± 2.26%): the top three values were for acyl-
carnitine C18:2 (23.1%) and acetylornithine (Ac-Orn: 
18.1%) in Duroc pigs and kynurenine in Large White 
pigs (16.5%). The most significant association was found 
for kynurenine with SNPs on SSC10, in both the Large 
White breed and in the meta-analysis (P = 1.83 ×  10–32 
and P = 7.88 ×  10–37). The most significant association 
in Duroc pigs was identified for acylcarnitine C18:2 on 
SSC15 (P = 4.99 ×  10–18), again matching the highest val-
ues of the PVE for the same SNP [see Additional file 1: 
Table S9].

To confirm and further expand these results, we also 
analyzed the ratios of metabolite concentrations as 
metabolite traits. Similar studies in humans have already 
shown that these combined metabotypes can signifi-
cantly reduce variation [2]. This is especially true when a 
pair of metabolites are closely interdependent, acting as 
substrates and/or products in the same enzymatic reac-
tion or pathway or are connected through a common 
regulatory system [2]. A total of 594 and 39 ratios showed 
significant associations (considering a stringent p-gain 
threshold; Fig.  2b) in Large White and Duroc popula-
tions, respectively, which identified a total of 49 mQTL. 
Of these, 34 were not previously identified with the sin-
gle metabolite approach: 15 in Large White, 4 of which 
were also found in the meta-analysis; 18 in Duroc, 2 of 
which were also found in meta-analysis; and one only in 
the meta-analysis (see Additional file  1: Tables S9 and 
S10). Of the large number of significant mQTL identified 
for Large White pigs, many ratios involved at least one 
glycerophospholipid (570 ratios). Most of these ratios (n. 
470) were identified for the same SSC6 region that was 
also associated with single glycerophospholipids, fur-
ther supporting the presence of a major mQTL in this 
chromosome region that affects the metabolism of these 
molecules.

By combing the results obtained for the metabolite 
ratios with those obtained for single metabolites, we 
identified a total of 97 mQTL (Table  2; see Additional 
file  1: Table  S11) for 126 metabolites, which accounted 
for 72.4% of the analyzed molecules: 18 mQTL were asso-
ciated with amino acids; 9 with acylcarnitines; 13 with 
biogenic amines; 38 with phosphatidylcholines; 13 with 
lysophosphatidylcholines; and 20 with sphingomyelins.

Putative causal genes for mQTL involved in biochemical 
and regulatory pathways
To prioritize likely causal genes for the identified 
mQTL, we adapted the strategies proposed by pre-
vious GWAS for metabolites in humans (e.g., [52, 
53]). We retrieved information from: (i) a hypothesis-
free genetic approach based on genomic annotations 
within 1  Mb centered at the lead SNP; (ii) specific 
metabolite-gene associations obtained from 6 data-
bases and a manually curated literature survey. Since 
most of the available biological knowledge is derived 
from human studies, we utilized this information to 
conduct a first human-pig comparative analysis of 
GIM, as outlined below. From this analysis, approxi-
mately two thirds of the mQTL identified potential 
causal genes: one gene was deemed plausible for 51 
mQTL, while for the remaining 13 mQTL, 2 or 3 genes 
could be equally plausible. Thirty-four of these genes 
encode enzymes that are directly involved in metabolic 
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Table 2 Summary of genetic association signals for metabolites (mQTL) identified in Large White and Duroc pigs

SSC:positiona Single metabolite analyses Metabolite ratio analyses Candidate gene(s)h

Metaboliteb Pc GWASd Metabolite  ratiose p‑gainf GWASg

1:13637577 – – – PC aa C32:0/PC aa C34:4; 
PC aa C32:0/PC ae C32:2

1.52 ×  106 D SYNE1r, VIPr

1:30232849 Ile 2.08 ×  10–07 Meta – – – SLC2A12t

1:31868855 Orn, Arg 7.71 ×  10–13 Meta, LW Arg/Orn; Arg/Lys 2.49 ×  1021 LW, D, Meta ARG1e

1:127957580 PC ae C34:3 3.39 ×  10–07 D – – – CATSPER2r

1:130488207 – – – SM C16:0/SM C18:0 1.67 ×  107 D CHP1r

1:131201231 – – – C4/C5 1.78 ×  105 LW IVDe

1:133696865 PC ae C34:3 1.83 ×  10–06 D – – – MEIS2r

1:270725631 Cit 1.44 ×  10–12 Meta, LW – – – ASS1e

1:272712128 – – – PC ae C38:4/PC ae C40:5 1.44 ×  106 LW GFI1Br, SURF4r, CELe

1:273242436 Sarcosine 3.49 ×  10–08 LW – – – SARDHe

2:9548890 PC ae C42:0 6.08 ×  10–07 Meta, D PC aa C38:3/PC aa C40:4 (9) 3.01 ×  108 D FADS1e, FADS2e, FADS3e

2:45628435 SM C18:0 1.70 ×  10–06 LW PC aa C32:0/PC ae C34:1 
(37)

3.42 ×  1011 LW, Meta FAR1e

2:50110622 – – – SM C16:1/SM C18:1 (1) 1.02 ×  1008 LW, Meta SNAP47r

2:60455290 – – – SM C16:1/SM C18:1 (5) 6.30 ×  1012 LW, Meta TM6SF2r, UPF1r

2:66008692 SM C18:1, SM C18:0 3.0 ×  10–07 LW SM C16:1/SM C18:1 (10) 3.94 ×  1010 LW, Meta DHPSe

2:70649393 SM C18:0, SM C18:1 2.60 ×  10–09 LW SM C16:1/SM C18:1 (9) 7.04 ×  1014 LW, Meta CERS4e, LDLRr

2:77810469 – – – SM C16:1/SM C18:1 (5) 9.40 ×  1010 LW PLPPR3r

3:40354181 – – – ADMA/total-DMA 2.74 ×  105 LW UBE2Ie

4:14576462 SM C20:2 2.07 ×  10–07 Meta – – – TRIB1r

4:93440441 – – – PC ae C38:2/SM (OH) C14:1 2.07 ×  105 D MEF2Dr

4:122058519 – – – PC aa C34:1/PC aa C36:1 (4) 1.09 ×  109 D, Meta ALG14e

4:130543416 ADMA, total-DMA 2.55 ×  10–14 LW, Meta – – – DDAH1e

5:56960624 – – – PC aa C32:3/PC aa C36:1 (2) 2.41 ×  108 D PTPROr, RERGr

5:66734388 Alpha-AAA, Ile, Phe, kynure-
nine*

8.48 ×  10–07 LW, Meta – – – TSPAN9r, TSPAN11r

5:87611954 His 2.44 ×  10–06 D – – – HALe

6:7037256 Gly 1.30 ×  10–06 LW – – – GCSHe

6:8449207 Ac-Orn 4.29 ×  10–14 D, Meta – – – WWOXr

6:29486603 PC aa C40:5 (other 12) 2.35 ×  10–24 LW, Meta PC aa C38:4/PC aa C38:5 
(459)

7.37 ×  1047 LW, Meta LPCAT2e, SMPD3e

6:167797522 – – – SM (OH) C22:1/SM C24:0 (7) 1.40 ×  1013 Meta, LW, D ELOVL1e

7:8566130 PC aa C42:5, PC aa C40:6 2.95 ×  10–08 D, Meta PC ae C38:5/PC ae C40:6; 
PC aa C38:4/PC aa C42:5

4.73 ×  106 D ELOVL2e

7:23110906 Cit 7.57 ×  10–07 LW – – – MDC1r

7:45991916 PC ae C44:6, PC ae C40:1 2.21 ×  10–10 LW, Meta PC ae C44:5/PC ae C44:6 
(18)

2.07 ×  1024 Meta, LW, D ELOVL5e

7:54919473 PC ae C40:1 (other 5) 3.31 ×  10–17 Meta, LW PC aa C38:4/PC ae C42:2 
(26)

7.78 ×  1019 Meta, LW PLIN1r

7:57650479 – – – PC aa C42:0/PC ae C40:1 (1) 1.38 ×  106 D PTPN9r

7:65570498 Pro 9.04 ×  10–07 LW – – – EGLN3r

7:78429656 – – – PC aa C38:0/PC ae C40:1 2.13 ×  106 LW PIP4P1e, TMEM55Be

7:86348536 LysoPC a C16:0 3.09 ×  10–06 D PC ae C34:1/PC ae C38:6 4.5 ×  106 D CHD2r, SLCO3A1r

7:89764753 – – – PC ae C34:2/PC ae C36:5 (4) 5.23 ×  106 Meta, LW TMEM229Br

8:96490961 LysoPC a C20:3 2.11 ×  10–06 LW – – – MFSD8t

8:111825944 – – – PC aa C32:2/SM C18:1 2.44 ×  105 D ELOVL6e, EGFr

9:482531 – – – PC ae C36:1/PC ae C36:2 2.29 ×  106 D TMEM41Br

10:12447567 Kynurenine 7.88 ×  10–37 Meta, LW, D Phe/kynurenine 2.97 ×  106 LW KMOe

11:2901405 LysoPC a C16:0 1.11 ×  10–06 D – – – SPATA13r
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processes/transformations that include the associated 
metabolites, 4 encode transporters and the remaining 
genes encode regulatory proteins/signaling transmit-
ters or structural elements. For the other 33 mQTL, 
as no obvious candidates could be identified, novel 
causal genes not yet described in other species may be 
included in the highlighted genomic regions.

We can list a few examples of candidate genes for the 
identified mQTL. Among the mQTL for the concentra-
tion of a few amino acids, 6 genes encode enzymes or 

transporters that may directly alter the corresponding 
amino acid concentration or ratio (Table 2): (i) arginase 
1 (ARG1, on SSC1), which encodes the enzyme that cata-
lyzes the hydrolysis of arginine to ornithine and urea, 
may explain an mQTL for the level of arginine and orni-
thine and their ratio; (ii) argininosuccinate synthase 1 
(ASS1, on SSC1), which encodes the enyme that catalyzes 
the formation of arginosuccinate from aspartate, citrul-
line and ATP, may explain an mQTL, for the level of cit-
rulline; (iii) histidine ammonia-lyase (HAL, on SSC5), 

The reported results are from single metabolite and metabolite ratio analyses that pointed at some candidate genes. The complete list of all 97 mQTL and other 
details are given in Additional file 1, Table S11
a Sus scrofa chromosome (SSC) and the position of the most significant marker on Sscrofa11.1 genome version
b The names or acronyms of the most significant metabolites for the corresponding mQTL region identified by the reported tag SNP are listed. When more than one 
metabolite was significant, the metabolites are listed from the most significant. If more than four metabolites have been identified for the same mQTL, the number of 
significant metabolites in addition to the top one is indicated in parenthesis
c At each mQTL, the P of association is reported for the most significant metabolite for the indicated chromosome variant position
d Significant results obtained in the GWAS for the Large White breed (LW), Duroc breed (D) and in the meta-analysis (Meta) (listed from the most significant, when 
more than one reported significant results)
e The most significant ratios are reported. When more than two significant ratios were identified for the corresponding QTL, the number of additional ratios is reported 
in parenthesis
f The highest p-gain value (most significant results in the ratio analyses) is reported
g Significant results obtained in the GWAS for the Large White breed (LW), Duroc breed (D) and in the meta-analysis (Meta) (listed from the GWAS that reported the 
most significant results, when more than one analyses reported significant results)
h The candidate genes potentially explaining a functional effect on the identified mQTL are defined as indicated in Methods. The type of encoded protein by the 
candidate genes is also indicated: r = regulatory; e = enzyme; t = transporter

Table 2 (continued)

SSC:positiona Single metabolite analyses Metabolite ratio analyses Candidate gene(s)h

Metaboliteb Pc GWASd Metabolite  ratiose p‑gainf GWASg

12:3934836 C0 1.17 ×  10–06 LW – – – PGS1e

12:6356756 PC ae C40:6 (10) 4.09 ×  10–15 Meta, LW PC ae C36:5/PC ae C38:6 
(32)

2.01 ×  1015 LW, Meta FADS6e

12:16761024 PC ae C42:5 1.80 ×  10–06 LW – – – ITGB3r

12:45808302 Serotonin 3.47 ×  10–08 LW, Meta – – – SLC6A4t

12:60396907 PC aa C38:4 (PC aa C34:4) 9.22 ×  10–07 Meta – – – PEMTe

13:207771882 LysoPC a C20:4 1.95 ×  10–06 Meta – – – ITGB2r

14:64397658 PC ae C44:5 2.57 ×  10–07 LW, Meta – – – RHOBTB1r

14:96845763 – – – PC aa C32:3/PC ae C38:1 1.37 ×  105 D PCDH15r

14:108968359 – – – PC aa C32:3/PC aa C36:1 5.98 ×  106 D CRTAC1r

14:111732013 SM C20:2 1.89 ×  10–06 LW – – – SCDe

14:122538710 PC aa C40:4 9.05 ×  10–08 Meta – – – GPAMe, ACSL5e

14:141410475 – – – SM (OH) C24:1/SM C16:0 
(10)

1.48 ×  107 LW ECHS1e

15:10146862 – – – lysoPC a C18:0/PC aa C34:2 1.70 ×  105 D LRP1Br

15:82279524 Alpha-AAA 2.01 ×  10–06 D – – – MTX2r

15:131052021 C18:2 4.99 ×  10–18 D, LW, Meta C14:1/C18:2; C16/C18:2 8.24 ×  108 Meta DNERr, CAB39r

16:47077521 C3 2.16 ×  10–06 LW – – – FAM155Ar

17:5154217 – – – Arg/Thr; Lys/Thr 9.92 ×  106 Meta SLC7A2t

17:41835566 PC aa C42:5 3.39 ×  10–06 D – – – LBPr

17:54676990 LysoPC a C16:1 (other 3) 7.13 ×  10–08 LW, Meta – – – BCAS1r

18:8294159 PC aa C36:5 3.21 ×  10–06 D – – – AGKe

18:22275108 – – – Lys/Met; Lys/Orn 1.10 ×  106 LW AASSe
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which encodes the enzyme that  catalyzes the first reac-
tion of the histidine catabolism, may explain an mQTL 
for the level of histidine; (iv) glycine cleavage system pro-
tein H (GCSH, on SSC6), which encodes the transporter 
that shuttles the methylamine group of glycine from the 
P protein (GLDC) to the T protein (GCST), may explain 
an mQTL for the level of glycine; (v) solute carrier family 
7 member 2 (SLC7A2, on SSC17), which encodes a cati-
onic amino acid transporter responsible for the uptake 
of arginine (Arg), lysine (Lys) and ornithine (Orn), may 
explain an mQTL for the Arg/Threonine (Thr) and Lys/
Thr ratios; (vi) aminoadipate-semialdehyde synthase 

(AASS, on SSC18), which encodes the enzyme that cata-
lyzes the first 2 steps in the lysine degradation pathway 
may explain an mQTL for the Lys/Met and Lys/Orn 
ratios.

The ratio between 2 acylcarnitines (butyrylcarnitine 
and valerylcarnitine; C4/C5) was found to be associated 
with SNPs near the isovaleryl-CoA dehydrogenase gene 
(IVD, on SSC1). This gene encodes the enzyme respon-
sible for catalyzing the third step of leucine catabolism.

The mQTL identified for several biogenic amines may 
involve candidate genes found in the considered genomic 
window (Table 2): (i) sarcosine dehydrogenase (SARDH, 

Fig. 2 Joint Manhattan plots summarizing the results of the GWAS. GWAS are reported for the single metabolites and their ratios in the two breeds. 
a GWAS for single metabolite levels in Large White pigs, Duroc pigs, and in meta-analysis. b GWAS for metabolite ratio levels in Large White pigs, 
Duroc pigs, and in meta-analysis. Each dot represents a SNP. Suggestive and significant associations are highlighted in green. The candidate genes 
at the identified mQTL are listed above the signals
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on SSC1), associated with the level of sarcosine, encodes 
a mitochondrial enzyme that catalyzes the oxidative 
demethylation of sarcosine; (ii) dimethylarginine dimeth-
ylaminohydrolase 1 (DDAH1, on SSC4), associated with 
the level of asymmetric dimethylarginine (ADMA), 
encodes the enzyme that hydrolyzes ADMA; (iii) kynure-
nine 3-monooxygenase (KMO, on SSC10), associated 
with the level of kynurenine, encodes a key enzyme in 
tryptophan catabolism, which catalyzes the hydroxy-
lation of l-kynurenine to form 3-hydroxy-l-kynure-
nine; (iv) solute carrier family 6 member 4 (SLC6A4, on 
SSC12), also known as 5-hydroxytryptamine (serotonin) 
transporter (5-HTT), affecting the level of serotonin, 
encodes an integral membrane protein that transports 
this neurotransmitter from synaptic spaces into presyn-
aptic neurons.

mQTL identified for the levels of different lipid groups 
(phosphatidylcholines, lysophospatidylcholines and 
sphingomyelins) enabled the identification of several 
genes that encode enzymes involved in various meta-
bolic pathways of these metabolite groups (Table  2): 
(i) carboxyl ester lipase (CEL, on SSC1), which encodes 
a pancreatic enzyme that catalyzes the hydrolysis of a 
wide range of lipid substrates; (ii) members of the fatty 
acid desaturase gene family on SSC2 (FADS1/FADS2/ 
FADS3) and SSC12 (FADS6), which encode desaturase 
enzymes that regulate the unsaturation of fatty acids; (iii) 
fatty acyl-CoA reductase 1 (FAR1, on SSC2), identified 
through the ratios between glycerophospholipids, which 
encodes an enzyme involved in the reduction of saturated 
and unsaturated fatty acyl-CoA to fatty alcohols; (iv) low 
density lipoprotein receptor (LDLR), which encodes the 
receptor for the major cholesterol-carrying lipoprotein 
of plasma, known to be involved in sphingomyelin reg-
ulation, may explain an mQTL on SSC2, together with 
the closely located ceramide synthase 4 (CERS4), which 
encodes an endoplasmic reticulum membrane compo-
nent with sphingosine N-acyltransferase activity involved 
in sphingolipid metabolism; (v) lysophosphatidylcholine 
acyltransferase 2 (LPCAT2) and sphingomyelin phos-
phodiesterase 3 (SMPD3), both in the SSC6 region asso-
ciated with the largest number of glycerophospholipid 
ratios (and ratios with sphingomyelins), which encode 
an enzyme exhibiting both acyltransferase and acetyl-
transferase activities involved in phosphatidylcholine 
acyl-chain remodeling and an enzyme that hydrolyzes 
sphingosylphosphocholines, respectively; (vi) members 
of the ELOVL fatty acid elongase gene family (ELOVL1 
on SSC6, ELOVL2 and ELOVL5 on two SSC7 regions and 
EVOVL6 on SSC8), which encode endoplasmic retic-
ulum-bound enzymes that catalyze key reactions in the 
long-chain fatty acids elongation cycle; (vii) perilipin 1 
(PLIN1, on SSC7), which encode a coat protein of lipid 

storage droplets that modulates adipocyte lipid metabo-
lism; (viii) phosphatidylethanolamine N-methyltrans-
ferase (PEMT, on SSC12), which encodes the enzyme 
that converts intracellular choline and phosphatidyletha-
nolamine to phosphatidylcholine in different processes; 
(ix) stearoyl-CoA desaturase (SCD, on SSC14), which 
encodes an enzyme involved in fatty acid biosynthesis; (x) 
enoyl-CoA hydratase, short chain 1 (ECHS1, on SSC14), 
which encodes an enzyme involved in the mitochondrial 
fatty acid beta-oxidation pathway.

Profiling associations among metabolite groups reveals 
cascade effects of candidate genes
Considering that the applied metabolomic approach can 
analyze various metabolites within the same subgroups, 
we then tested the hypothesis that association results 
could reveal information on the cascade effects of one 
locus across several related metabolites, as proposed by 
Rhee et al. [54]. For example, in Fig. 3a, the P-value for 
association is shown across 10 lysophosphatidylcholines 
and 73 phosphatidylcholines for the leading SNP for the 
mQTL with FADS6, LPCAT2/SMPD3, and PLIN1 as 
identified candidate genes in Large White pigs. It can 
be observed from this figure that these 3 mQTL may 
have complementary roles in the overall profile of these 
metabolites, with little overlap, suggesting that they may 
influence different pathways, distinguished by the num-
ber of carbon atoms and the level of unsaturation of the 
analyzed molecules.

We then used two-dimensional representations based 
on metabolite ratios to disclose additional information 
about the cascade effects of gene markers on multiple 
metabolites (Fig. 3b–f; see Additional file 3: Figures S4–
S8). For instance, in Duroc pigs, FADS6 and PLIN1, 
which were not significantly associated with any metab-
olites in single metabolite analyses, were found to have 
similarities with the profile ratios observed in the Large 
White breed when using metabolite ratios. For both 
breeds, at the FADS6 mQTL, the top ratios included the 
phosphatidylcholines PC ae C36:4 and PC ae C38 with 
4 to 6 double bonds, and PC ae C38, with 4 to 6 double 
bonds. At the PLIN1 mQTL, the top ratios were for PC 
ae C38:0, PC ae C40:1 and PC ae C42, with one to three 
double bonds. These two-dimensional pictures based on 
metabolite ratios confirmed the results of the meta-anal-
yses, supporting the fact that the same two mQTL seg-
regate in both breeds, although signals did not reach the 
significance threshold in Duroc breed, likely due to the 
lower power of the GWAS for this breed. For the mQTL 
identified in Duroc pigs in the correspondence of the 
FADS1/FADS2/FADS3 genes, and in Large White pigs 
in the region of the FAR1 and LPCAT2/SMPD3 genes 
(all confirmed in meta-analyses), the two-dimensional 
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pictures based on the metabolite ratios suggest that the 
identified mQTL may have different cascade effects in the 
two breeds. In Large White pigs, this ratio-based analy-
sis identified clear effects of FAR1 on PC ae C34:1, PC ae 
C36:3, and PC ae C38:5, which did not emerge in the sin-
gle metabolite analysis. These findings further comple-
ment the effects on the glycerophospholipid family that 
have already been shown for FADS6, LPCAT2/SMPD3, 
and PLIN1 using the single-marker analyses (Fig. 3a).

GWAS results provide comparative pig‑human insights
We compared the GWAS results we obtained in pigs with 
the results reported for the same metabolites in humans 
[7, 9–11, 55–59]. A summary of this comparison is pre-
sented in Additional file 4: Text S3. Out of the 64 mQTL 
for which we identified candidate genes, 41 included 
genes that were associated with the same metabolites 

or with metabolites of the same family in both pigs and 
humans. This provides indirect inter-species confir-
mation of our results and those previously identified in 
humans [see Additional file 1: Tables S11 and S12]. This 
can be also used to further support the candidacy of the 
reported genes which, in turn, may reveal some potential 
novel putative functions of the corresponding genes that 
have not yet been well defined. An example is the mQTL 
on SSC1 for isoleucine concentration, for which the sol-
ute carrier family 2 member 12 gene (SLC2A12) was 
identified as candidate gene. This gene encodes glucose 
transporter 12 (GLUT12), which acts as a sugar and urate 
transporter, suggesting that isoleucine could be a marker 
for the role of this transporter protein [60], as GWAS 
in humans have also reported that variability in this 
gene may affect blood isoleucine level [see Additional 
file  1: Tables S11, S12]. Another example comes from 

Fig. 3 Profiles of associations at selected mQTL across metabolites and pairs of metabolites of the glycerophospholipid family. a The patterns are 
obtained for the mQTL regions encompassing the FADS6, LPCAT2/SMPD3 and PLIN1 genes in Large White pigs. The P-value of association is shown 
for the lead SNP of the respective mQTL. b–f Two-dimensional profiles in Large White and Duroc pigs for the candidate genes: FADS6, PLIN1, FADS1/
FADS2/FADS3, FAR1, and LPCAT2/SMPD3. The −  log10(P-value) is reported for acyl-alkyl phosphatidylcholines (PC ae Cx:x), lysophosphatidylcholines 
(lysoPC) and acyl-alkyl phosphatidylcholines (diacyl PC aa Cx:x). mQTL that were also identified with single metabolite analyses in one of the breeds 
are marked with an asterisk (*). All these mQTL were also identified in the single metabolite meta-analyses
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the mQTL on SSC1, which encompasses the vasoactive 
intestinal peptide gene (VIP), which is associated with 
phosphatidylcholine concentrations. Variability in the 
same gene in humans has been shown to be associated 
with the level of phosphatidylcholines [see Additional 
file  1: Table  S11, S12]. VIP function has been shown to 
promote the synthesis of pulmonary surfactant phospho-
lipids, which might be linked to the cascade pathways 
that regulate the production of the associated phosphati-
dylcholines [61, 62].

We also combined the GWAS results we obtained in 
pigs with other sources of information, which sheds new 
light on the putative function of several other genes. One 
example comes from the major facilitator superfamily 
domain containing 8 (MFSD8) gene located in a region 
on SSC8 that is associated with the level of a lysophos-
phatidylcholine. In humans, a form of the neuronal 
ceroid lipofuscinosis (neuronal ceroid lipofuscinosis 7, 
CLN7) is associated with pathogenic variants in MFSD8, 
which encodes an MFS transporter that moves small sol-
utes (yet to be identified) across membranes [63, 64]. The 
major facilitator superfamily domain-containing protein 
2A gene (MFSD2A), a close paralog of MFSD8, is known 
to be a component of the blood–brain barrier that trans-
ports lysophosphatidylcholines into the central nerv-
ous system [65]. Adding our results to the information 
derived from these other studies suggests that MFSD8 
may use lysophosphatidylcholines as substrates that are 
actively transported from the blood to the brain. This 
hypothesis could potentially be useful in explaining the 
molecular mechanisms underlying CLN7 disease.

Multiple GWAS in humans have confirmed associa-
tions between metabolites and genes that we also report 
here for pigs. In most cases, these genes are well charac-
terized, with well-established direct relationships to the 
associated metabolites (such as ARG1, IVD, SARDH, 
FADS1/FADS2/FADS3, CERS4, DDAH1, HAL, GCSH, 
ELOVL2, KMO, and SLC7A2), as previously described. 
However, in the case of the tribbles pseudokinase 1 
gene (TRIB1), which we identified to be associated with 
sphingomyelins, and of the transmembrane protein 229B 
gene (TMEM229B), associated with phosphatidylcholine 
ratios in our results, the connections may be indirect, 
involving different regulatory pathways.

Several strong candidate genes with roles that have 
been already clearly defined have not been associated 
with the same metabolites in humans as we report here 
for pigs [Additional file 1: Table S11]. This list includes, 
several genes involved in the glycerophospholipid biosyn-
thesis and fatty acid metabolism super-pathways: FAR1, 
associated in pigs with several phosphatidylcholine 
ratios; LPCAT2 and SMPD3, included in the SSC6 mQTL 
with the largest number of glycerophospholipid ratios; 

ELOVL1, ELOVL5, and ELOVL6 which are associated 
in pigs with sphingomyelins or phosphatidylcholines; 
FADS6, associated in pigs with phosphatidylcholines 
and various glycerophospholipid ratios; SCD, associated 
in pigs with sphingomyelins, whereas in humans it was 
associated with other lipids produced within the com-
mon glycerophospholipid biosynthesis super-pathway, 
i.e. phosphatidylcholines and lysophosphatidylcholines; 
and ECHS1, associated in pigs with sphingomyelins. Fur-
thermore, variability in the SLC6A4 gene region, which 
we identified to be associated with plasma serotonin lev-
els in pigs, has not demonstrated the same association 
with this biogenic amine in any human biofluids, to the 
best of our knowledge.

Identification of candidate causative mutations in pigs 
based on whole genome resequencing
We conducted whole genome resequencing for 88 Large 
White and 35 Duroc pigs from the same metabolized pig 
populations, as well as for additional 35 Landrace pigs for 
comparative analyses. Among the 1,420,757 variants [see 
Additional file 2, Table S13; Additional file 4: Text S4] we 
identified in the 97 mQTL regions, and considering those 
variants that alter the protein coding sequence [see Addi-
tional file 1: Table S14], only few of these potentially dis-
rupting mutations had a moderate to high breed specific 
linkage disequilibrium (LD; r2 > 0.5) with the lead SNP 
for the corresponding mQTL. Therefore, only variants in 
6 genes (missense mutations in ARG1, GFI1B, PTPRO, 
MDC1, and FADS6, and one in-frame insertion in KMO) 
can be considered compatible with a putative causative 
role for the identified mQTL based on their estimated 
minor allele frequency, LD level, and potential functional 
effects on the encoded protein (Table 3).

Focusing on the sequence structure of the KMO gene, 
the in-frame insertion that segregates in the three cos-
mopolitan breeds sequenced in this study (Large White, 
Duroc, and Landrace) had an LD value of 1.00 with the 
most significant SSC10 SNP for the level of kynurenine 
and with 2 other KMO missense mutations that were pre-
sent in all three breeds [see Additional file 2: Table S15]. 
These findings indicate that two major haplotypes 
(named rs81278711-A and rs81278711-G, according to 
the tag SNP associated with the level of kynurenine in 
the GWAS) are present at the KMO in these three breeds. 
These KMO haplotypes have opposite frequencies in the 
Large White and Duroc breeds [see Additional file  2: 
Tables S15 and S16].

We also report the frequencies of KMO nonsynony-
mous mutations in 22 different pig breeds (including the 
3 cosmopolitan breeds: Large White, Duroc and Lan-
drace; and 19 autochthonous breeds from 9 European 
countries) and in European wild boars [see Additional 
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file 2: Table S16]. The most frequent haplotype presents 
in the Large White breed (rs81278711-A) may be con-
sidered the wild-type form, as it was fixed in European 
wild boars. This form was the most frequent in most local 
breeds, except for the Mora Romagnola breed, which 
experienced introgression from Duroc pigs in the past 
[45].

A case study: KMO haplotypes affect metabolites 
of the kynurenine pathway based on a nutrigenetic study
The kynurenine (KYN) pathway (KP) is an alternate tryp-
tophan (Trp) catabolic pathway that, under physiological 
conditions, accounts for ~ 95% of the overall breakdown 
of this essential amino acid, resulting in the downstream 
production of KYN and other immunoregulatory and 
neuroactive metabolites, including the important redox 
cofactor nicotinamide adenine dinucleotide (NAD) [66]. 
In this pathway, Trp is converted into KYN, which is then 
metabolized through three routes. One of these routes 
involves conversion of KYN into 3-hydroxykynure-
nine (HK) by the enzyme kynurenine 3-monoxygenase 
(KMO). This conversion leads to the production of qui-
nolinic acid (QUIN), which is further transformed into 
NAD. A simplified representation of the KP is shown in 
Fig. 4a.

After identifying KMO as the candidate gene affecting 
the level of KYN in pig plasma (Fig.  4b), we conducted 
a longitudinal nutrigenetic study to examine the impact 
of the two specific KMO haplotypes on KYN and several 
other metabolites of the same pathways. We used the 
targeted Bevital platform (see Additional file 2: Table S4; 
the Biocrates platform did not include all these metabo-
lites) [49] to measure all major KP intermediate metabo-
lites in the plasma of two groups of eight weaned Large 
White × Landrace piglets. Each group was homozygous 
for one of the two KMO haplotypes (rs81278711-A 
and rs81278711-G), which correspond to two different 
KMO deduced protein forms, as determined by a few 
single amino acid polymorphisms [see Additional file 2: 
Table S15].

All animals were subsequently fed with standard diet 
and then with a double diet supplementation of Trp to 
potentially boost the putative effects of the 2 KMO haplo-
types on the KP components in relation to the basal state. 
At both basal and Trp supplementation time points, the 
piglets of the two groups had different plasma KYN con-
centrations, in the same direction as expected based on 
the GWAS results, with the rs81278711-AA genotype 
having a higher KYN level than the rs81278711-GG gen-
otype (Fig. 4b, c).

The Trp load in the piglets’ diet magnified the differ-
ence in KYN concentration between the animals carry-
ing the two opposite genotypes (P = 6.22 ×  10–04), with a 

large increase of KYN in the rs81278711-GG piglets. The 
same effect was also evident on the levels of kynurenic 
acid (KA) and anthranilic acid (AA) (Fig. 4d, e; see Addi-
tional file 2: Table S4), which defines the two alternative 
routes of transformation of KYN that are not catalyzed 
by KMO. The level of 3-hydroxykynurenine (HK), whose 
production from KYN is catalyzed by KMO, did not dif-
fer between the piglets with different genotypes. The 
same was true for all other metabolites [see Additional 
file  2: Table  S4; Additional file  3: Figures  S9 and S10]. 
Given these results, using a steady-state kinetic model, 
we tested whether the most parsimonious explanation for 
the differences in the levels of the considered metabolites 
in the two groups of piglets based on their different KMO 
haplotypes could be attributed to differences in the reac-
tion rate (velocity) of the KMO enzyme (vKMO). Specifi-
cally, the model assessed whether an increase of vKMO in 
the  KMOrs81278711−GG pigs could result in the observed 
differences in KYN levels (as well as KA and AA) [see 
Additional file  2: Tables S4 and S6; Additional file  3: 
Figures  S9-S11] due to an increased production rate of 
HK. This modeling indicated that the observed differ-
ences could be due to differences in one of the following 
parameters: the affinity for the substrate (KM), the turn-
over number (kcat), or the total amount of enzyme ([E]). 
We then analyzed KMO gene expression and protein lev-
els in the liver (the main tissue involved in the KP) of pigs 
with the two KMO genotypes, using qPCR and Western 
blotting. No differences were observed in both analyses 
between the two groups of pigs [see Additional file 3: Fig-
ure S12], ruling out the possibility that the estimated dif-
ference in vKMO could be attributed to differences in [E]. 
In silico modeling and investigation of the KMO protein 
structure revealed three variations that characterize the 
two haplotypes (S95F, Q135R, and V178L), all three in 
the FAD-binding domain (Fig. 4f; Additional file 3: Figure 
S13; Additional file 4: Text S5). Therefore, considering all 
these results, it is reasonable to suggest that the differ-
ences in the two KMO protein forms, as defined by the 
2 haplotypes, can alter metabolite affinity to the encoded 
enzyme or affect the cofactor binding and, therefore, the 
enzyme kinetics.

Gaussian graphical models can reconstruct metabolic 
pathways in pigs
Following the reasoning that metabolomic data can be 
used to deduce biochemical information, we went back 
to the 164 metabolites from the 6 analyte classes that 
were measured using the Biocrates approach in all Large 
White and Duroc pigs. Our goal was to identify correla-
tions between metabolites and construct a pig-specific 
Gaussian Graphical Model (GGM). In GGM, edges rep-
resent correlations between two variables conditional on 
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Fig. 4 Information on the kynurenine pathway and KMO. a Simplified representation of the kynurenine pathway. Metabolites are shown 
in boxes and reaction directions are shown by arrows labelled with enzyme acronyms. The red symbols “↓”, “↑” and “ = ” indicate the decrease, 
increase, and equal metabolite concentration in piglets homozygous for the KMO rs81278711-G or the rs81278711-A alleles, as observed 
in the longitudinal nutrigenetic study (the SNP refers to that associated with kynurenine level in the GWAS; these two alleles indicate the two 
major KMO haplotypes). Abbreviations for the metabolites: Trp, tryptophan; KYN, kynurenine; XA, xanthurenic acid; AA, anthranilic acid; KA, 
kynurenic acid; HK, 3-hydroxykynurenine; HAA, 3-hydroxyanthranilic acid; QUIN, quinolinic acid. Abbreviations for the enzymes: TDO, tryptophan 
2,3-dioxygenase; KYNU1, kynureninase; KYNU2, kynureninase; KMO, kynurenine 3-monoxygenase; KAT1, kynurenine aminotransferase; KAT2, 
kynurenine aminotransferase; 3HAO, 3-hydroxyanthranilate 3,4-dioxygenase. b, c Plasma kynurenine (KYN) concentration in Large White and Duroc 
pigs included in the GWAS and in the Large White × Landrace piglets homozygous for the alternative KMO alleles. d, e Plasma anthranilic acid 
(AA) and kynurenic acid (KA) concentrations in the piglets homozygous for the alternative KMO haplotypes. f Model of the pig KMO protein 
as retrieved from the SwissModel repository and based on rat KMO (PDB: 6LKD). Chains A and B of the functional dimeric structure are shown 
in cartoons and ribbons representations, respectively. The FAD-binding domain detected by the PFAM entry PF01494 is depicted in cyan. Positions 
corresponding to the differences in the two KMO haplotypes are represented in spacefill and coloured in red. Variations (S95F, Q135R, and V178L) 
occurring in the FAD-binding domain are evidenced
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all other variables (i.e., all metabolites not included in the 
pair) to calculate Partial Correlation Coefficients (PCC) 
[67]. High PCC values between metabolite pairs typically 
indicate closely related metabolites that are separated 
by one or a few enzymatic steps (pathway distance = 1, 
2, 3…). This allows for the reconstruction of known (as 
proof-of-concept) or unknown (discovery) steps and bio-
logical connections in metabolic pathways, including co-
regulations [29, 42]. The GGM consisted of a total of 159 
nodes: 88 metabolites connected by 73 edges (PCC > 0.3) 
and 71 singletons (Fig.  5a). Integrating GWAS informa-
tion into the GGM did not significantly alter the metab-
olite networks obtained (Fig.  5b; see Additional file  2: 
Table S17; Additional file 3: Figure S14; Additional file 4: 
Text S6). Several examples on the inclusion of the effect 
of specific mQTL genotypes in estimation of metabolite 
correlations are shown in Additional file  3: Figures  S15 
and S16.

The 73 significant PCC of the GGM obtained with 
all pigs are reported in Table  4 and Additional file  1: 
Table  S18, along with comparative information from 
similar human metabolomic datasets retrieved from 

previous studies [55, 56, 67]. The proposed metabolic 
pathway explanations are also included. As expected, 
metabolites of the same family tended to be more inter-
connected with each other than with metabolites of other 
classes, as also observed in previous studies [55, 56, 67]. 
Only 3 of the 73 significant PCC included metabolites 
from different families [see Additional file 1: Table S18]. 
Several detailed examples of partial networks that 
include closely related metabolites of the same classes are 
reported in Additional file 3, Figures S16 and S17 and are 
illustrated in Additional file 4: Text S7.

The top four PCC values were for metabolite pairs 
(sphingomyelins, lysophosphatidylcholines or phosphati-
dylcholines) that are separated by just one enzymatic 
step of desaturation or elongation. The 5th ranked PCC 
involves metabolites that belong to two subgroups of 
the glycerophospholipid class (PC aa C38:3and lysoPC a 
C20:3; PCC = 0.669) and that differ by a C18∶0 fatty acid 
residue, probably linked by still-uncharacterized step(s) 
of the Lands cycle. All of these top ranked metabolite 
pairs have also been reported to have high PCC values in 
humans [55, 56, 67].

Fig. 5 Gaussian Graphical Model (GGM) obtained using metabolomic information in pigs. a Network presentation of Partial Correlation Coefficients 
(PCC) > 0.3 (88 metabolites connected by 73 edges) in the Large White and Duroc populations. Singletons (n = 71) are not shown. Each node 
represents a metabolite, and the line width of edges indicates the PCC strength. Node labels are given in Additional file 1: Table S1. b Comparison 
between PCC in Large White pigs when excluding and including the genetic effects defined by the identified mQTL
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One of the highest PCC values was obtained for the 
pair histamine-serotonin (PCC = 0.63). Histamine is a 
biogenic amine, with a variety of important functions, 
and is mainly synthesized in basophils and mast cells. 
Serotonin (also known as 5-hydroxytryptamine or 5-HT) 
is another biogenic amine and a well-known neuro-
transmitter. Biochemically, histamine and serotonin are 
not directly linked, so another explanation for this high 
PCC value should be considered. Histamine can inhibit 

serotonin release in some neural tissues via histamine H3 
receptors  (H3Rs) [68, 69]. Recently, the relation between 
these two metabolites has been suggested to be due to a 
novel mechanism that regulates activity of the serotonin 
transporter (SERT, also known as SERT1 or SLC6A4) 
by the  H3R-mediated CaMKII/calcineurin pathway that 
controls reuptake and clearance of released serotonin in 
the central nervous system [70]. It remains to be evalu-
ated whether these regulatory steps can explain the high 

Table 4 Top 30 Gaussian Graphical Model (GGM) edge weights

The reported results are ranked based on the Partial Correlation Coefficient (PCC) obtained from the metabolomic profiles of the investigated Large White and 
Duroc pigs. The table also includes PCC information reported in previous studies in humans for the same metabolite pairs, the linked mQTL identified in pigs and the 
proposed metabolic pathway explanations
a The complete list of significant PCC is reported in Additional file 1: Table S18
b PCC reported for the same pair of metabolites in humans
c mQTL number correspondence is reported in Additional file 1: Table S11
‡ Information from Krumsiek et al. [67]
§ information from Mittelstrass et al. [55]
¶ Information from Krumsiek et al. [56]

Ranka Metabolite 1 Metabolite 2 Pig PCC Human  PCCb mQTLc Metabolic pathways/reactions

1 SM C18:0 SM C18:1 0.784 0.767‡ 19–23 One desaturation

2 lysoPC a C16:0 lysoPC a C18:0 0.722 0.731† 51, 64 One elongation

3 SM C16:1 SM C18:1 0.689 0.765† 19–23 One elongation

4 PC aa C38:6 PC aa C40:6 0.678 0.709† 41, 67 One elongation

5 PC aa C38:3 lysoPC a C20:3 0.669 0.5–0.7‡ 41 Lands cycle

6 Ile Leu 0.664 0.506§ 2, 34 Branched-chain amino acids

7 Histamine Serotonin 0.634 – 69 Co-regulation

8 C10 C8 0.627 0.735† 55 β-oxidation step—β-oxidation intermediate

9 lysoPC a C18:2 lysoPC a C20:4 0.622 – 74 One elongation and two desaturations

10 PC ae C40:1 PC ae C42:2 0.599 – 46, 47 One elongation and one desaturation

11 C4:1 H1 0.589 – – β-oxidation and energy homeostasis

12 SM (OH) C22:1 SM (OH) C22:2 0.589  ≥ 0.7‡ – Sphingolipid-specific desaturation

13 PC aa C40:4 PC aa C40:5 0.573 0.5–0.7‡ 16, 82 One desaturation

14 C10:1 C12:1 0.569 0.3–0.5‡ – β-oxidation intermediates

15 PC ae C36:1 PC ae C36:2 0.538 – 38, 59 Desaturation

16 ADMA Total-DMA 0.533 – 32, 56 Arginine N-methyltransferases 
(PRMTs) – total.DMA = ADMA + SDMA

17 SM C16:0 SM C16:1 0.524 0.5–0.7‡ – Sphingolipid-specific desaturation

18 lysoPC a C18:1 lysoPC a C18:2 0.507 0.5–0.7‡ – One desaturation

19 PC aa C36:2 lysoPC a C18:0 0.481 0.3–0.5‡ – Lands cycle

20 PC ae C36:4 PC ae C38:5 0.469 – 52 One desaturation

21 PC aa C38:4 lysoPC a C20:4 0.467 0.3–0.5‡ 70, 74 Lands cycle

22 SM C24:0 SM (OH) C24:1 0.455 – – One hydroxylation and one desaturation

23 PC aa C34:2 PC aa C34:3 0.449 – – One desaturation

24 PC aa C36:4 PC aa C36:5 0.444 – 15, 95 One desaturation

25 PC ae C34:2 PC ae C36:3 0.443 – 18 One elongation and one desaturation

26 SM C24:0 SM C24:1 0.440 0.577† – Sphingolipid-specific desaturation

27 PC aa C36:3 lysoPC a C18:1 0.440 – – Lands cycle

28 PC aa C34:2 PC aa C36:4 0.406 – – One elongation and two desaturations

29 Lys Orn 0.405 – 3, 4, 65, 75, 96 Biosynthesis of amino acids

30 PC ae C38:4 PC ae C40:4 0.400 0.3–0.5‡ 41 One elongation
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PCC value observed in pigs. SLC6A4 is also the candidate 
gene associated with the level of serotonin reported here 
for the GWAS for Large White pigs (Table 2).

Another interesting result included, again, seroto-
nin, which had a significant PCC value with taurine 
(PCC = 0.306) [see Additional file 1: Table S18]. Taurine, 
one of the most abundant free amino acids in vertebrates, 
plays various important physiological roles, including in 
development and neuronal activity. This significant PCC 
value observed in pigs may be due to an indirect mecha-
nism that involves regulation of the serotonin receptor 
and its release, as suggested by preliminary results from 
a zebrafish model, in which taurine-mediated aggression 
is abolished via serotonin receptor antagonism [71]. The 
indirect relationships between these three metabolites 
(serotonin, taurine, and histamine), as identified through 
the PCC of the latter two with serotonin, could be attrib-
uted to some not yet defined feedback regulation systems 
that involve these three metabolites. It is worth noting 
that in Large White pigs, the lead SNP near SLC6A4 for 
the mQTL for serotonin was also suggestively associated 
with taurine, further suggesting a potential indirect bio-
logical connection between these metabolites (Tables  2 
and 4; see Additional file 3: Figure S19).

Discussion
Our study represents the largest investigation that has 
merged metabolomics and genomics in pigs to date. By 
combining information from heritability estimation and 
GWAS, we report that many basic components of pig 
metabolism, defined in this study as plasma metabolites 
from various biochemical classes, are influenced, at least 
in part, by genetic factors that contribute to modifying 
their circulating concentration and can, therefore, be 
indicated as genetically influenced metabolites or GIM. 
These genetic factors may have cascade effects on sev-
eral pathways or metabolic steps. This aligns with results 
reported in humans [7, 9–11, 55–59]. In this context, 
adding data from another mammalian species, such as 
the pig, provides comparative information that contrib-
utes to uncover the complexity of the mammalian metab-
olomic landscape. This can lead to the development of 
new concepts and hypotheses that support the role of 
various metabolites in fundamental biological processes, 
which may also be valuable in explaining their signifi-
cance in human diseases.

Based on our results, we conducted a human-pig 
comparative analysis of the estimated heritability of 
various metabolite classes. This analysis utilized infor-
mation from the review study on humans by Hagenbeek 
et al. [8], which included studies based on the same tar-
geted metabolomic approach that we employed in pigs. 
Despite methodological differences in the collection 

and analysis of data and in the number of individuals 
investigated, several key points are worth discussing. 
The levels of essential amino acids had lower heritabil-
ity estimates than the levels of nonessential amino acids 
in both humans and pigs, although this difference was 
not significant in either species. It has been suggested 
that essential amino acids, which cannot be synthesized 
directly by the organism, may generally have lower her-
itability than nonessential amino acids, because the 
latter can be influenced directly by the metabolism of 
the organism [72]. However, this hypothesis requires 
further support from additional studies. From the 
human-pig comparative analysis that related herit-
ability estimates with the complexity of the chemical 
structure of the metabolites [see Additional file 4: Text 
S2], it became evident that a more detailed examina-
tion of various groups of biomolecules is necessary to 
draw any conclusions. This analysis should consider 
the number of biochemical steps needed to metabolize 
these molecules, as well as the major mQTL that have 
been identified in both species.

Summarizing the results obtained from the two diver-
gent Western pig breeds analyzed here (Large White 
and Duroc), we identified genome-wide associations for 
a total of 126 metabolites from 5 analyte classes. These 
results pointed to a total of 97 mQTL regions, distributed 
across all porcine autosomes. It is also worth mention-
ing that the high level of LD presents in pig populations 
[34, 35] can make it difficult to evaluate if the associa-
tions are due to one or more loci, especially for the most 
extended regions. Further studies would be needed to 
analyze some of the mQTL regions. Of the 97 mQTL 
regions identified in this study, 29 were only found in 
Large White pigs, and 33 were only found in Duroc pigs. 
The remaining mQTL were discovered in both breeds 
(n = 5), in one breed or the other and in meta-analyses 
(15 and 5, respectively, also identified in either the Large 
White or the Duroc breed), or solely in meta-analyses 
(n = 10). Some of the mQTL that emerged from meta-
analyses showed clear segregation in the two breeds 
when breed-specific two-dimensional pictures based on 
metabolite ratios were included. Other mQTL that were 
identified with meta-analyses could result from the com-
bination of different breed-specific effects of the same or 
closely linked loci, as the two-dimensional analyses pro-
duced from the metabolite showed different patterns in 
the two breeds, in particular for mQTL for which more 
than one candidate gene was highlighted (i.e. Fig. 4c–e). 
We therefore demonstrated for the first time in this study 
that ratio-based analyses can be useful in extracting addi-
tional information for interpreting and defining the role 
of certain mQTL, and can contribute to establishing cor-
respondence between different populations.
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Summarizing these results, we can clearly state that 
the mQTL patterns in Large White and Duroc breeds 
are largely different. When the mQTL segregate in both 
breeds, allele frequencies of the lead SNP are usually 
opposite in the two breeds [see Additional file 1: Tables 
S9; Additional file 2: Table S15], further supporting vari-
ous metabolic differences between Large White and 
Duroc pigs. In many pig production systems, these two 
breeds are utilized to form lines that are then crossed to 
exploit heterosis, which can be the result of, at least in 
part, the combination of different genetic factors that are 
involved in basic metabolic processes. It was interest-
ing to note that the number of breed specific mQTL was 
similar for the two breeds, despite the different number 
of animals investigated in the Large White and Duroc 
breeds. In Duroc pigs, the use of metabolite ratios was 
very effective in revealing novel (and independent) breed 
specific mQTL that did not emerge in the single metab-
olite analysis (15 out of 33 mQTL were Duroc specific). 
Although the number of significant metabolite ratios was 
largest for Large White pigs (mainly involving phosphati-
dylcholines), most of them identified the same few major 
mQTL already identified in single metabolite GWAS. The 
utility of metabolite ratios has already been demonstrated 
in human GWAS to reveal several mQTL that could not 
be identified by using single metabolite information [7, 
53, 73]. This suggests that ratios can contribute to iden-
tifying genetic determinants that affect specific reaction 
steps or groups of metabolites within the same metabolic 
pathways or that may be co-regulated.

For 66% of the 97 mQTL regions, one or more potential 
effector genes could be identified. Many of these genes 
can be considered obvious candidates based on already 
well-established information, due to their direct involve-
ment in the metabolic steps and biological mechanisms 
that include the corresponding metabolites. The iden-
tification of strong candidate genes was also possible 
within the Duroc breed, in which GWAS were based on 
a relatively low number of pigs. This suggests that the 
use of molecular phenotypes (i.e. the metabotypes) that 
are closely linked to genetic variation is able to provide a 
snapshot of the genetic determinants that affect metabo-
lism in relatively small experimental designs.

We then obtained comparative human-pig information 
for the identified mQTL, providing inter-species confir-
mation of candidate genes and opening new windows 
on the biological roles of the encoded enzymes or trans-
porters. For example, considering the findings in pigs, 
it would be intriguing to investigate further if altered 
lysophosphatidylcholine accumulation [63, 64] could be 
the molecular mechanism that links MFSD8 variants to 
the predisposition to neuronal ceroid lipofuscinoses in 
humans.

When we attempted to assess whether causative muta-
tions of the identified mQTL would be determined by 
variants that affect the encoded protein structures based 
on concordant evidence, including the predicted effects 
of the variants, segregation in the breed where the mQTL 
was identified, and LD with the lead SNP, we could only 
assert this in a very few cases. Therefore, we can hypoth-
esize that most of the mQTL are better explained by 
regulatory variants that may alter the expression of the 
identified genes, which aligns with what has already 
been suggested in humans [53]. Therefore, complement-
ing genotype-tissue expression datasets in pigs [74] with 
metabolomic data can provide additional information to 
elucidate the biological diversity in this livestock species, 
ultimately leading to a better understanding of basic bio-
logical processes.

We then further investigated one mQTL, due to its rel-
evance in affecting a key component of the kynurenine 
pathway, which is linked to tryptophan catabolism, an 
essential amino acid that is a limiting factor in pig nutri-
tion. Although additional functional studies are needed, 
we suggest that the KMO haplotypes that produce two 
different protein forms (distinguished by a few residues, 
including an insertion/deletion on an additional residue) 
can be the genetic determinants for the different levels 
of plasma kynurenine. The two haplotypes are not dif-
ferentially expressed, and the two derived protein forms 
are not differentially abundant in the liver, which is one of 
the most important tissues where KMO works. We then 
designed a nutrigenetic study in which we fed piglets 
with opposite KMO genotypes varying levels of trypto-
phan. By evaluating the cascade effects on other metabo-
lites in the kynurenine pathway, we were able to model 
the KMO reaction kinetics. Further studies are needed to 
evaluate how pigs with different KMO genotypes respond 
in terms of growth performances and amino acid uptake 
when fed different levels of tryptophan.

Thus, studies in pigs focused on the nutritional need 
for tryptophan should also consider the KMO genotypes 
of the animals. Since our results indicate that the levels 
of several other amino acids are associated with genes 
encoding specific enzymes involved in their metabolism, 
additional nutrigenetic studies can be developed based 
on the information obtained from the GWAS in the two 
breeds. Therefore, these results, focusing on important 
elements in pig nutrition, can open new research avenues 
that integrate pig nutrition and genetics, paving the way 
for the development of innovative concepts in precision 
feeding.

The metabolomic profiles we obtained in pigs were also 
used to reconstruct metabolic relationships using a GGM 
and to evaluate the impact of specific mQTL on their 
networks. The correlations observed in the metabolomic 
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data confirm direct relationships between many metabo-
lites, separated by one or a few reaction steps. Based on 
these expected results that indirectly confirm the ability 
of GGM to capture metabolic pathway information, the 
high PCC values that we identified for several non-obvi-
ous pairs of metabolites create opportunities for further 
investigations to clarify potential novel metabolic rela-
tionships. Of note, the triangulation between serotonin, 
taurine, and histamine that we observed in their respec-
tive pairwise correlations can be useful in clarifying their 
interplay and evaluating their involvement in explaining 
the genetic components of behavioral traits in pigs. This 
information may be highly relevant in pig breeding to 
improve animal welfare.

Our study has several limitations that must be pointed 
out. Metabolomics profiles of the animals used for all 
genetic analyses were obtained at the end of the produc-
tion life of the sib-tested pigs, at 9  months of age, after 
slaughter. Therefore, this final time point, which also 
includes stressful conditions for the pigs, such as move-
ment, loading, transportation, and then slaughtering 
procedures, may have altered the basal level of several 
metabolites. This could also have affected the potential 
effects of some genetic factors on metabolite levels. On 
the other hand, all of these factors, including feeding 
and pre-slaughter feed deprivation of the animals, were 
applied in a consistent and controlled manner to all ani-
mals. This eliminated some of the confounding elements 
that typically reduce the power of experimental designs 
in metabolomics studies involving humans. Nevertheless, 
the metabolomic profiles of other developmental and 
growth phases of the pigs were not explored. Conducting 
more comprehensive measurements of the pig metabo-
lome, which would involve additional animals, different 
breeds, and other metabolomic approaches that are capa-
ble of detecting more metabolites will provide further 
insight into the genetic factors influencing the metabo-
lism in this livestock species.

Conclusions
This study has provided the first catalog of genetic factors 
affecting the pig blood metabolome. This information 
allowed for comparisons with what is already known in 
humans. The findings help in understanding the genetic 
regulation of metabolism in pigs, provide several hypoth-
esis-generating elements, and strengthen the relevance of 
the pig as biomedical model. The identification of many 
mQTL in pigs that highlighted gene-metabolite associa-
tions showcases the usefulness of merging metabolomics 
and genomics to identify genetically influenced metabo-
lites and use metabotypes to help dissect several produc-
tion traits and link genetics and nutrition in this species. 
Other nutrigenetic experiments can be developed based 

on genetically influenced metabolites that also consti-
tute important nutrients, paving the way for a system-
atic exploration of the results obtained in this study and 
ultimately designing novel nutrition strategies in pigs. 
Further studies will be designed considering genetically 
influenced metabolites as molecular phenotypes useful 
for predicting production traits with the final aim of inte-
grating them into novel breeding and selection programs 
in pigs.
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Additional file 1: Table S1. Metabolites included in the study. Summary sta-
tistics of metabolite levels for the Large White and Duroc pig populations 
are provided. Table S2. List of the components of the basic diet for the 
piglets involved in the nutrigenetic longitudinal study. Table S3. Analyzed 
composition of the basic diet for the piglets involved in the nutrigenetic 
longitudinal study. Table S8. Narrow sense heritability  (h2

P) and genomic 
heritability  (h2

SNP) of the metabolite level. Description: Estimates are pro-
vided for the Large White and Duroc pig populations. Negative estimates 
are not reported. Table S9. All genetic association signals obtained in 
the Large White and Duroc pig populations. Description: Results include 
the study of both single metabolites and metabolite ratios. Table S10. All 
genetic association signals obtained in the meta-analyses. Description: 
Results include the study of both single metabolites and metabolite ratios. 
Table S11. Complete list of mQTL identified in pigs and comparative analy-
sis of mQTL between pigs and humans. Table S12. Extended information 
obtained from GWAS Catalog of mQTL identified in humans. Table S14. 
Genetic variants identified from whole-genome resequencing of Large 
White, Duroc and Landrace pigs. Description: Only missense variants, 
frameshift variants, in-frame deletions and insertions, stop gained and 
start lost variants are reported. For each pig breed (Large White, Duroc and 
Landrace), the number of animals carrying the three genotypes and allele 
frequencies are provided. Table S18. All significant Gaussian Graphical 
Model (GGM) edge weights (i.e. Partial Correlation Coefficients, PCC > 0.3) 
obtained from the metabolomic profiles of the investigated Large White 
and Duroc pigs. Description: Comparative information reported in previ-
ous studies in humans, the linked mQTL and the proposed metabolic 
pathway explanations are provided.

Additional file 2: Table S4. List of metabolites in the kynurenine pathway 
(KP) analyzed in the pigs included in the nutrigenetic study and statistics 
of metabolites stratified by genotype and metabolic condition at the basal 
and after the tryptophan (Trp) supplementation. Description: Metabo-
lomic data are obtained from the Bevital platform on plasma of Large 
White × Landrace piglets. Table S5. Systems of ordinary differential equa-
tions (ODE) used to model the kynurenine pathway. Description: Metabo-
lites are those reported in Additional file 2: Table S4. Table S6. Information 
used in the kinetic modeling of the kynurenine pathway. Table S7. Human 
kinetic constants. Table S13. Distribution of the predicted consequences 
for variants identified from whole-genome resequencing of Large White, 
Duroc and Landrace pigs. Table S15. Variants altering the protein coding 
sequence of the KMO gene. Description: Variant constituting two major 
haplotypes are those and forming two major haplotypes. Table S16. Allele 
frequency of the KMO polymorphisms identified in several pig breeds 
and in wild boars. Table S17. Partial Correlation Coefficients (PCC) in Large 
White pigs before and after the inclusion of the genetic effect from the 
mQTL (genotype-corrected PCC) in the GGM construction. Description: 
Underlined, the PPC >0.3.

Additional file 3: Figure S1. Simplified representation of the kynurenine 
pathway (KP), with information used in the kinetic modelling. Description: 
Metabolites are shown in boxes and reactions directions are shown by 
arrows labelled with the acronym of the enzymes. Abbreviations for the 
metabolites: Trp, tryptophan; KYN, kynurenine; XA, xanthurenic acid; AA, 
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anthranilic acid; KA, kynurenic acid; HK, 3-hydroxykynurenine; HAA, 
3-hydroxyanthranilic acid; QUIN, quinolinic acid. Abbreviations for the 
enzymes: TDO, tryptophan 2,3-dioxygenase; KYNU1, kynureninase; 
KYNU2, kynureninase; KMO, kynurenine 3-monoxygenase; KAT1, 
kynurenine aminotransferase; KAT2, kynurenine aminotransferase; 
3HAO, 3-hydroxyanthranilate 3,4-dioxygenase. Figure S2. Relationship 
between heritability and number of carbon atoms (with only one 
double bound) present in acylcarnitines, glycerophospholipids and 
sphingomyelins. Figure S3. Relationship between heritability and 
number of carbon atoms or double bounds within the phosphatidyl-
choline group. Description: a) Phosphatidylcholine acyl-alkyls with 
three double bounds (PC ae CX:3). b) Phosphatidylcholines acyl-alkyls 
with 36 carbon atoms and 1 to 5 double bonds (PC ae C36:X, X=1,..,5). 
c) Phosphatidylcholines acyl-alkyls with 38 carbon atoms and 1 to 6 
double bonds (PC ae C38:X, X=1,..,6). Figure S4. Complete profiles of 
associations of the mQTL (with FADS6 as candidate gene) over the 
metabolite pairs (ratios) of lysophosphatidylcholines and phosphati-
dylcholines. Description: The -log10(P) is reported. Figure S5. Complete 
profiles of associations of the mQTL (with PLIN1 as candidate gene) 
over metabolite pairs (ratios) of lysophosphatidylcholines and 
phosphatidylcholines. Description: The -log10(P) is reported. Figure S6. 
Complete profiles of associations of the mQTL (with FADS1/FADS2/
FADS3 as candidate genes) over metabolite pairs (ratios) of lysophos-
phatidylcholines and phosphatidylcholines. Description: The -log10(P) 
is reported. Figure S7. Complete profiles of associations of the mQTL 
(with FAR1 as candidate gene) over metabolite pairs (ratios) of 
lysophosphatidylcholines and phosphatidylcholines. Description: The 
-log10(P) is reported. Figure S8. Complete profiles of associations of 
the mQTL (with LPCAT2/SMPD3 as candidate genes) over metabolite 
pairs (ratios) of lysophosphatidylcholines and phosphatidylcholines. 
Description: The -log10(P) is reported. Figure S9. Plasma concentration 
of metabolites of the kynurenine pathway (KP) in Large White × 
Landrace piglets homozygous for the alternative KMO haplotypes 
(indicated with the tag SNP: rs81278711-AA and rs81278711-GG) at 
the basal tryptophan level (no tryptophan supplementation). 
Description: Abbreviations: Trp, tryptophan; KYN, kynurenine; XA, 
xanthurenic acid; AA, anthranilic acid; KA, kynurenic acid; HK, 
3-hydroxykynurenine; HAA, 3-hydroxyanthranilic acid; QUIN, quinolinic 
acid. Figure S10. Plasma concentration of metabolites of the 
kynurenine pathway (KP) in Large White × Landrace piglets 
homozygous for the alternative KMO haplotypes (indicated with the 
tag SNP: rs81278711-AA and rs81278711-GG) after tryptophan 
supplementation. Description: Abbreviations: Trp, tryptophan; KYN, 
kynurenine; XA, xanthurenic acid; AA, anthranilic acid; KA, kynurenic 
acid; HK, 3-hydroxykynurenine; HAA, 3-hydroxyanthranilic acid; QUIN, 
quinolinic acid. Figure S11. Relationships between kynurenine (KYN) 
levels and its first neighbor metabolites as stratified for the alternative 
KMO haplotypes (indicated with the tag SNP: rs81278711-AA and 
rs81278711-GG). Description: Data are from the nutrigenetic study in 
the Large White × Landrace piglets, after tryptophan supplementa-
tion. a) Haplotypes differ in [KYN] but not in [Trp]. b) Haplotypes differ 
in [KYN] but not in [HK]. c) Haplotypes differ in [KYN] and in [KA]. d) 
Haplotypes differ in [KYN] and in [AA]. Abbreviations: Trp, tryptophan; 
KYN, kynurenine; AA, anthranilic acid; KA, kynurenic acid; HK, 
3-hydroxykynurenine. Figure S12. Results of gene expression and 
Western blotting analyses for KMO. Description: Liver samples of pigs 
carrying two different KMO genotypes (rs81278711-AA and 
rs81278711-GG) were analysed. A) Results of the qPCR analyses 
including average Ct values for KMO and B2M genes obtained for the 
pigs with different KMO genotypes. The relative gene expression was 
obtained as 2−∆∆Ct and presented as averaged measures, considering 
all animals with the same genotype (as no gene expression differences 
were observed between the two genotypes in both experimental 
designs, namely the performance tested Large White gilts and the 
crossbred pigs of the nutrigenetic experiment; t-test, P = 0.65). B) 
Examples of Western blot images from 6 pigs (pigs 1, 2 and 3 with 
genotype rs81278711-AA; pigs 4, 5 and 6 with genotype rs81278711-
GG) and the corresponding band lines stained with Coomassie Brilliant 
Blue used to normalize the samples. The statistical analysis showed no 

significant band differences between the two KMO genotypes (P = 0.202). 
M: Molecular weight marker. Figure S13. Domains of the pig KMO protein. 
Description: Domains are annotated with Interpro tool on the protein 
KMO_PIG (Q9MZS9). FAD-binding domain is detected by the PFAM entry 
PF01494 (FAD_binding_3), a member of the clan NADP_Rossmann. 
Positions corresponding to the differences in the two haplotypes are 
indicated. The variations S95F, Q135R and V178L occur in the FAD binding 
domain and may influence the cofactor binding. Figure S14. Inclusion of 
the mQTL information in GGM and correlation analyses. Description: a) 
Partial Correlation Coefficients (PCC) vs. genotype-corrected PCC. b) 
Pearson’s correlations (r) vs. genotype-corrected Pearson’s correlations. 
Figure S15. Inclusion of the effect of the SMPD3/LPCAT2 genotypes in the 
estimation of metabolite correlations. Description: a) Effect of the SMPD3/
LPCAT2 genotypes on PC aa C36:4 and PC aa C36:1 metabolites (different 
direction of the β of association). b) Relationship between PC aa C36:4 and 
PC aa C36:1 metabolites. c) Effect of the SMPD3/LPCAT2 genotypes on PC 
aa C36:4 and PC aa C36:1 metabolites after inclusion of genetic 
information. d) Relationship between on PC aa C36:4 and PC aa C36:1 
metabolites after inclusion of genetic information. In b) and d), different 
colors represent the pigs with different SMPD3/LPCAT2 genotypes. Figure 
S16. Inclusion of the effect of the SLC6A4 genotypes in the estimation of 
metabolite correlations. Description: a) Effect of the SLC6A4 genotypes on 
serotonin and taurine metabolites (same direction of the β of association). 
b) Relationship between serotonin and taurine metabolites. c) Effect of 
the SLC6A4 genotypes on serotonin and taurine metabolites after 
inclusion of genetic information. d) Relationship between serotonin and 
taurine metabolites after inclusion of genetic information. In b) and d), 
different colors represent the pigs with different SLC6A4 genotypes. Figure 
S17. Comparative analysis of Partial Correlation Coefficients (PCC) and 
Pearson’s correlation coefficients between a few sphingomyelins and 
information on the associated genes as reported in the GWAS. Descrip-
tion: Results are from the Large White population. a) Partial correlation 
coefficients (|PCC|≥ 0.3). b) Correlation coefficients (|r|≥ 0.3). c) mQTL 
associated with single metabolites. Gray edges represent correlation 
coefficients. d) mQTL associated with metabolite ratios (arrows indicates 
affected metabolite pairs). Gray edges represent correlation coefficients. 
Information on the relevant mQTL number is reported in Additional file 1: 
Table S11. Figure S18. Comparative analysis of partial correlation 
coefficients (PCC) and Pearson’s correlation coefficients between a few 
lysophosphatidylcholines and information on the associated genes as 
reported in the GWAS. Description: Results are from the Large White 
population. Gray edges represent correlation coefficients. Metabolites and 
ratios targeted by mQTL 41 (LPCAT2/SMPD3) are highlighted by red and 
blue arrows, respectively. Information on the relevant mQTL number is 
reported in Additional file 1, Table S11. Figure S19. Manhattan plot results 
for serotonin and taurine GWAS in Large White pigs. Description: Green 
dots represent suggestively and significantly associated SNPs (P<5.0×10-5).

Additional file 4: Text S1. Detail on quantitative real time PCR and western 
blotting analyses of KMO. Text S2. Relationships between heritability esti-
mates of some metabolites in pigs and their chemical structures. Text S3. 
Comparative information on candidate genes between humans and pigs. 
Text S4. Identification and annotation of variants from whole genome 
resequencing data. Text S5. Evaluation of KMO mutations in relation to its 
protein sequence and structure. Text S6. Inclusion of the genetic effect in 
the Gaussian Graphical Model (GGM) construction. Text S7. Merging GGM 
and GWAS results.

Acknowledgements
We thank Valerio Joe Utzeri, Alessio Di Luca, Emilio Scotti, and Francesco Tas-
sone (University of Bologna) for their help and technical assistance.

Author contributions
SB: Data curation, Formal analysis (Bioinformatics/statistical analysis), Inter-
pretation of findings, Writing—original draft, Writing—review & editing. AR: 
Formal analysis (genomic analysis), investigation (genomic data), Writing—
review & editing. FF: Formal analysis (metabolomic analysis), investigation 
(metabolomic data), Writing—review & editing. GG: Formal analysis (statistical 
analysis), Writing—review & editing. PLM: Formal analysis (systems biology), 
Data curation, Writing—review & editing. PT: Methodology (Experimental 



Page 25 of 27Bovo et al. Genetics Selection Evolution           (2025) 57:11  

animals), Writing—review & editing. FB: Data curation, Writing—review & edit-
ing. MB: Data curation, Writing—review & editing. RC: Formal analysis (systems 
biology), Writing—review & editing. SD: Data curation, Writing—review & 
editing. MG: Methodology (Experimental animals), Writing—review & editing. 
DL: Methodology (Experimental animals). GM: Data curation, Writing—review 
& editing. GS: Data curation, Writing—review & editing. VT: Formal analysis 
(genomic analysis), Writing—review & editing. PZ: Data curation, Writing—
review & editing. PB: Methodology (Experimental animals), Project adminis-
tration (sample provision/ethics approvals), Writing—review & editing. UP: 
Project administration (metabolomic facility), Writing—review & editing. LF: 
Project administration (organization), Acquisition of funds, Conceptualization, 
Methodology (Experimental and analytical design), Interpretation of find-
ings, Writing—original draft, Writing—review & editing. All authors read and 
approved the final manuscript.

Funding
Sequencing data of autochthonous pig breeds were from the European 
Union’s Horizon 2020 research and innovation programme under grant 
agreement no. 634476 for the project with acronym TREASURE. We thank the 
TREASURE Consortium for the collaboration. This manuscript reflects only the 
authors’ views and opinions, neither the European Union nor the European 
Commission can be considered responsible for them. This study was sup-
ported by: (1) PRIN2017 PigPhenomics that has received funding from the 
Italian MUR (for the production of the genomic and metabolomic data) (to LF); 
(2) the Horizon Europe Re-Livestock project that has received funding from 
the European Union’s Horizon Europe research and innovation programme 
under the grant agreement No. 01059609 (for the elaboration and analysis of 
the data) (to LF and MG); (3) the Italian PRIN2022 project FEEDTHEPIG, Funded 
by the European Union—NextGenerationEU under the National Recovery 
and Resilience Plan (PNRR)—Mission 4 Education and research—Component 
2 From research to business—Investment 1.1 Notice PRIN 2022 PNRR (DD N. 
1409 del 14/09/2022), proposal code P2022FZMJ9—CUP J53D23018310001 
for the analysis of part of the data (to FB); (4) the Italian PRIN2022 HamCap-
ture, funded by the European Union—NextGenerationEU under the National 
Recovery and Resilience Plan (PNRR)—Mission 4 Education and research—
Component 2 From research to business—Investment 1.1 Notice Prin 2022—
DD N. 104 del 2/2/2022, proposal code 202238NP9N—CUP J53D23009570001 
(for the analysis of part of the data) (to GS); (5) the Programma di Sviluppo 
Rurale Nazionale (PSRN) SUIS-2, co-funded by the European Agricultural Fund 
for Rural Development of the European Union and by the MASAF (for pig 
sequencing data) (to LF and MG); (6) the European Union Next-GenerationEU 
(PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR)—MISSIONE 4 COMPO-
NENTE 2, INVESTIMENTO 1.4—D.D. 1032 17/06/2022, CN00000022), within the 
Agritech National Research Center (Agritech Spoke 1) (to LF and GS).

Availability of data and materials
Summary raw data on the concentration of the analyzed metabolites in 
Large White and Duroc pigs are available in Zenodo: https:// doi. org/ 10. 5281/ 
zenodo. 14046 073. Other datasets used and/or analyzed during the current 
study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
All animals used in this study were kept in compliance with Italian and Euro-
pean legislation governing pig production. The procedures described in this 
study adhere to both Italian and European Union regulations regarding animal 
care and slaughter. Pigs from the large cohorts (Large White and Duroc) were 
not specifically raised or treated for the purposes of this study. Therefore, no 
additional ethical evaluations were needed. The animals were slaughtered 
at a licensed commercial abattoir that followed all standard slaughtering 
procedures outlined in European regulations. Pigs involved in the longitudi-
nal nutrigenetic study were subjected to experimental practices approved 
for animal welfare by the Italian Ministry of Health, under protocol number 
878-2015-PRP.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Animal and Food Genomics Group, Division of Animal Sciences, Depart-
ment of Agricultural and Food Sciences, University of Bologna, Bologna, Italy. 
2 Endocrinology Research Group, Center for Applied Biomedical Research, 
Department of Medical and Surgical Sciences, University of Bologna, Bologna, 
Italy. 3 Division of Endocrinology and Prevention and Care of Diabetes, IRCCS 
Azienda Ospedaliero-Universitaria di Bologna, Policlinico di Sant’Orsola, 
Bologna, Italy. 4 Department of Statistical Sciences “Paolo Fortunati”, University 
of Bologna, Bologna, Italy. 5 Biocomputing Group, Department of Pharmacol-
ogy and Biotechnology, University of Bologna, Bologna, Italy. 6 Laboratory 
on Animal Nutrition and Feeding for Livestock Sustainability and Resilience, 
Division of Animal Sciences, Department of Agricultural and Food Sciences, 
University of Bologna, Bologna, Italy. 7 Associazione Nazionale Allevatori Suini, 
Rome, Italy. 

Received: 21 August 2024   Accepted: 18 February 2025

References
 1. Schook LB, Collares TV, Darfour-Oduro KA, De AK, Rund LA, Schachtsch-

neider KM, et al. Unraveling the swine genome: implications for human 
health. Annu Rev Anim Biosci. 2015;3:219–44.

 2. Suhre K, Gieger C. Genetic variation in metabolic phenotypes: study 
designs and applications. Nat Rev Genet. 2012;13:759–69.

 3. Houle D, Govindaraju DR, Omholt S. Phenomics: the next challenge. Nat 
Rev Genet. 2010;11:855–66.

 4. Fontanesi L. Metabolomics and livestock genomics: insights into a 
phenotyping frontier and its applications in animal breeding. Anim Front. 
2016;1:73–9.

 5. Nicholson G, Rantalainen M, Maher AD, Li JV, Malmodin D, Ahmadi KR, 
et al. Human metabolic profiles are stably controlled by genetic and 
environmental variation. Mol Syst Biol. 2011;7:525.

 6. Kastenmüller G, Raffler J, Gieger C, Suhre K. Genetics of human metabo-
lism: an update. Hum Mol Genet. 2015;24:R93-101.

 7. Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, Huang J, et al. 
An atlas of genetic influences on human blood metabolites. Nat Genet. 
2014;46:543–50.

 8. Hagenbeek FA, Pool R, van Dongen J, Draisma HHM, Jan Hottenga J, Wil-
lemsen G, et al. Heritability estimates for 361 blood metabolites across 40 
genome-wide association studies. Nat Commun. 2020;11:39.

 9. Tahir UA, Katz DH, Avila-Pachecho J, Bick AG, Pampana A, Robbins JM, 
et al. Whole genome association study of the plasma metabolome identi-
fies metabolites linked to cardiometabolic disease in black individuals. 
Nat Commun. 2022;13:4923.

 10. Yin X, Chan LS, Bose D, Jackson AU, VandeHaar P, Locke AE, et al. Genome-
wide association studies of metabolites in Finnish men identify disease-
relevant loci. Nat Commun. 2022;13:1644.

 11. Gieger C, Geistlinger L, Altmaier E, Hrabé de Angelis M, Kronenberg 
F, Meitinger T, et al. Genetics meets metabolomics: a genome-wide 
association study of metabolite profiles in human serum. PLoS Genet. 
2008;4:e1000282.

 12. Goldansaz SA, Guo AC, Sajed T, Steele MA, Plastow GS, Wishart DS. Live-
stock metabolomics and the livestock metabolome: a systematic review. 
PLoS ONE. 2017;12: e0177675.

 13. Sun HZ, Wang DM, Wang B, Wang JK, Liu HY, Guan LL, et al. Metabolomics 
of four biofluids from dairy cows: potential biomarkers for milk produc-
tion and quality. J Proteome Res. 2015;14:1287–98.

 14. Tian H, Zheng N, Wang W, Cheng J, Li S, Zhang Y, et al. Integrated 
metabolomics study of the milk of heat-stressed lactating dairy cows. Sci 
Rep. 2016;6:24208.

 15. Dervishi E, Zhang G, Mandal R, Wishart DS, Ametaj BN. Targeted metabo-
lomics: new insights into pathobiology of retained placenta in dairy cows 
and potential risk biomarkers. Animal. 2018;12:1050–9.

 16. Goldansaz SA, Markus S, Berjanskii M, Rout M, Guo AC, Wang Z, et al. Can-
didate serum metabolite biomarkers of residual feed intake and carcass 
merit in sheep. J Anim Sci. 2020;98:skaa298.

https://doi.org/10.5281/zenodo.14046073
https://doi.org/10.5281/zenodo.14046073


Page 26 of 27Bovo et al. Genetics Selection Evolution           (2025) 57:11 

 17. Luise D, Bovo S, Bosi P, Fanelli F, Pagotto U, Galimberti G, et al. Targeted 
metabolomic profiles of piglet plasma reveal physiological changes over 
the suckling period. Livest Sci. 2020;231: 103890.

 18. Buitenhuis AJ, Sundekilde UK, Poulsen NA, Bertram HC, Larsen LB, 
Sørensen P. Estimation of genetic parameters and detection of quan-
titative trait loci for metabolites in Danish Holstein milk. J Dairy Sci. 
2013;96:3285–95.

 19. Bovo S, Mazzoni G, Galimberti G, Calò DG, Fanelli F, Mezzullo M, et al. 
Metabolomics evidences plasma and serum biomarkers differentiating 
two heavy pig breeds. Animal. 2016;10:1741–8.

 20. Dervishi E, Bai X, Dyck MK, Harding JCS, Fortin F, Dekkers JCM, et al. 
GWAS and genetic and phenotypic correlations of plasma metabolites 
with complete blood count traits in healthy young pigs reveal implica-
tions for pig immune response. Front Mol Biosci. 2023;10:1140375.

 21. Li J, Akanno EC, Valente TS, Abo-Ismail M, Karisa BK, Wang Z, et al. 
Genomic heritability and genome-wide association studies of plasma 
metabolites in crossbred beef cattle. Front Genet. 2020;11: 538600.

 22. Liu D, Zhang H, Yang Y, Liu T, Guo Z, Fan W, et al. Metabolome-based 
genome-wide association study of duck meat leads to novel genetic 
and biochemical insights. Adv Sci (Weinh). 2023;10: e2300148.

 23. Xiang R, Berg IVD, MacLeod IM, Hayes BJ, Prowse-Wilkins CP, Wang M, 
et al. Quantifying the contribution of sequence variants with regula-
tory and evolutionary significance to 34 bovine complex traits. Proc 
Natl Acad Sci USA. 2019;116:19398–408.

 24. Xiang R, Fang L, Liu S, Macleod IM, Liu Z, Breen EJ, et al. Gene expres-
sion and RNA splicing explain large proportions of the heritability for 
complex traits in cattle. Cell Genom. 2023;3: 100385.

 25. Bovo S, Mazzoni G, Bertolini F, Schiavo G, Galimberti G, Gallo M, et al. 
Genome-wide association studies for 30 haematological and blood 
clinical-biochemical traits in Large White pigs reveal genomic regions 
affecting intermediate phenotypes. Sci Rep. 2019;9:7003.

 26. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-
generation PLINK: rising to the challenge of larger and richer datasets. 
Gigascience. 2015;4:7.

 27. Bovo S, Mazzoni G, Calò DG, Galimberti G, Fanelli F, Mezzullo M, et al. 
Deconstructing the pig sex metabolome: targeted metabolomics in 
heavy pigs revealed sexual dimorphisms in plasma biomarkers and 
metabolic pathways. J Anim Sci. 2015;93:5681–93.

 28. R: a language and environment for statistical computing. Vienna: R 
Foundation for Statistical Computing. 2023.

 29. Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for 
association studies. Nat Genet. 2012;44:821–4.

 30. Shim H, Chasman DI, Smith JD, Mora S, Ridker PM, Nickerson DA, et al. 
A multivariate genome-wide association analysis of 10 LDL subfrac-
tions, and their response to statin treatment, in 1868 Caucasians. PLoS 
ONE. 2015;10: e0120758.

 31. Monir MM, Zhu J. Comparing GWAS results of complex traits using full 
genetic model and additive models for revealing genetic architecture. 
Sci Rep. 2017;7:38600.

 32. Petersen AK, Krumsiek J, Wägele B, Theis FJ, Wichmann HE, Gieger C, 
et al. On the hypothesis-free testing of metabolite ratios in genome-
wide and metabolome-wide association studies. BMC Bioinformat. 
2012;13:120.

 33. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of 
genomewide association scans. Bioinformatics. 2010;26:2190–1.

 34. Muñoz M, Bozzi R, García-Casco J, Núñez Y, Ribani A, Franci O, et al. 
Genomic diversity, linkage disequilibrium and selection signatures in 
European local pig breeds assessed with a high density SNP chip. Sci 
Rep. 2019;9:13546.

 35. Schiavo G, Bovo S, Muñoz M, Ribani A, Alves E, Araújo JP, et al. Runs 
of homozygosity provide a genome landscape picture of inbreeding 
and genetic history of European autochthonous and commercial pig 
breeds. Anim Genet. 2021;52:155–70.

 36. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, 
et al. The GeneCards Suite: from gene data mining to disease genome 
sequence analyses. Curr Protoc Bioinformat. 2016;54:1.30.1-1.30.33.

 37. Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone 
C, et al. The NHGRI-EBI GWAS Catalog of published genome-wide asso-
ciation studies, targeted arrays and summary statistics 2019. Nucleic 
Acids Res. 2019;47:D1005–12.

 38. Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh 
J, et al. PhenoScanner V2: an expanded tool for searching human 
genotype-phenotype associations. Bioinformatics. 2019;35:4851–3.

 39. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. 
Nucleic Acids Res. 2000;28:27–30.

 40. Wishart DS, Guo A, Oler E, Wang F, Anjum A, Peters H, et al. HMDB 
5.0: the Human Metabolome Database for 2022. Nucleic Acids Res. 
2022;50:D622–31.

 41. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2023 
update. Nucleic Acids Res. 2023;51:D1373–80.

 42. Li H, Durbin R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics. 2009;25:1754–60.

 43. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der 
Auwera GA, et al. Scaling accurate genetic variant discovery to tens of 
thousands of samples. bioRxiv. 2018. https:// doi. org/ 10. 1101/ 201178.

 44. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The 
ensembl variant effect predictor. Genome Biol. 2016;17:122.

 45. Bovo S, Ribani A, Muñoz M, Alves E, Araujo JP, Bozzi R, et al. Whole-
genome sequencing of European autochthonous and commercial pig 
breeds allows the detection of signatures of selection for adaptation of 
genetic resources to different breeding and production systems. Genet 
Sel Evol. 2020;52:33.

 46. Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, 
et al. InterPro in 2022. Nucleic Acids Res. 2023;51:D418–27.

 47. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny 
R, et al. SWISS-MODEL: homology modelling of protein structures and 
complexes. Nucleic Acids Res. 2018;46:W296-303.

 48. Gloaguen M, Le Floc’h N, Primot Y, Corrent E, van Milgen J. Response 
of piglets to the standardized ileal digestible isoleucine, histidine and 
leucine supply in cereal-soybean meal-based diets. Animal. 2013;7:901–8.

 49. Midttun Ø, Hustad S, Ueland PM. Quantitative profiling of biomarkers 
related to B-vitamin status, tryptophan metabolism and inflammation in 
human plasma by liquid chromatography/tandem mass spectrometry. 
Rapid Commun Mass Spectrom. 2009;23:1371–9.

 50. Stavrum AK, Heiland I, Schuster S, Puntervoll P, Ziegler M. Model of trypto-
phan metabolism, readily scalable using tissue-specific gene expression 
data. J Biol Chem. 2013;288:34555–66.

 51. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 
Cytoscape: a software environment for integrated models of biomolecu-
lar interaction networks. Genome Res. 2003;13:2498–504.

 52. Lotta LA, Pietzner M, Stewart ID, Wittemans LBL, Li C, Bonelli R, et al. A 
cross-platform approach identifies genetic regulators of human metabo-
lism and health. Nat Genet. 2021;53:54–64.

 53. Chen Y, Lu T, Pettersson-Kymmer U, Stewart ID, Butler-Laporte G, 
Nakanishi T, et al. Genomic atlas of the plasma metabolome prioritizes 
metabolites implicated in human diseases. Nat Genet. 2023;55:44–53.

 54. Rhee EP, Ho JE, Chen MH, Shen D, Cheng S, Larson MG, et al. A genome-
wide association study of the human metabolome in a community-
based cohort. Cell Metab. 2013;18:130–43.

 55. Mittelstrass K, Ried JS, Yu Z, Krumsiek J, Gieger C, Prehn C, et al. Discovery 
of sexual dimorphisms in metabolic and genetic biomarkers. PLoS Genet. 
2011;7: e1002215.

 56. Krumsiek J, Suhre K, Evans AM, Mitchell MW, Mohney RP, Milburn MV, 
et al. Mining the unknown: a systems approach to metabolite identifica-
tion combining genetic and metabolic information. PLoS Genet. 2012;8: 
e1003005.

 57. Cadby G, Giles C, Melton PE, Huynh K, Mellett NA, Duong T, et al. Compre-
hensive genetic analysis of the human lipidome identifies loci associated 
with lipid homeostasis with links to coronary artery disease. Nat Com-
mun. 2022;13:3124.

 58. Tabassum R, Rämö JT, Ripatti P, Koskela JT, Kurki M, Karjalainen J, et al. 
Genetic architecture of human plasma lipidome and its link to cardiovas-
cular disease. Nat Commun. 2019;10:4329.

 59. Riveros-Mckay F, Oliver-Williams C, Karthikeyan S, Walter K, Kundu K, 
Ouwehand WH, et al. The influence of rare variants in circulating meta-
bolic biomarkers. PLoS Genet. 2020;16: e1008605.

 60. Toyoda Y, Takada T, Miyata H, Matsuo H, Kassai H, Nakao K, et al. Iden-
tification of GLUT12/SLC2A12 as a urate transporter that regulates the 
blood urate level in hyperuricemia model mice. Proc Natl Acad Sci USA. 
2020;117:18175–7.

https://doi.org/10.1101/201178


Page 27 of 27Bovo et al. Genetics Selection Evolution           (2025) 57:11  

 61. Li L, Luo ZQ, Zhou FW, Feng DD, Guang CX, Zhang C, Sun XH. Effect of 
vasoactive intestinal peptide on pulmonary surfactants phospholipid 
synthesis in lung explants. Acta Pharmacol Sin. 2004;25:1652–8.

 62. Li L, She H, Yue SJ, Qin XQ, Guan CX, Liu HJ, et al. Role of c-fos gene in 
vasoactive intestinal peptide promoted synthesis of pulmonary sur-
factant phospholipids. Regul Pept. 2007;140:117–24.

 63. Siintola E, Topcu M, Aula N, Lohi H, Minassian BA, Paterson AD, et al. The 
novel neuronal ceroid lipofuscinosis gene MFSD8 encodes a putative 
lysosomal transporter. Am J Hum Genet. 2007;81:136–46.

 64. Aiello C, Terracciano A, Simonati A, Discepoli G, Cannelli N, Claps D, et al. 
Mutations in MFSD8/CLN7 are a frequent cause of variant-late infantile 
neuronal ceroid lipofuscinosis. Hum Mutat. 2009;30:E530–40.

 65. Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, et al. 
Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexae-
noic acid. Nature. 2014;509:503–6.

 66. Badawy AAB. Kynurenine pathway of tryptophan metabolism: regulatory 
and functional aspects. Int J Tryptophan Res. 2017;10:1178646917691938.

 67. Krumsiek J, Suhre K, Illig T, Adamski J, Theis FJ. Gaussian graphical mod-
eling reconstructs pathway reactions from high-throughput metabo-
lomics data. BMC Syst Biol. 2011;5:21.

 68. Schlicker E, Betz R, Göthert M. Histamine H3 receptor-mediated inhibition 
of serotonin release in the rat brain cortex. Naunyn Schmiedebergs Arch 
Pharmacol. 1988;337:588–90.

 69. Threlfell S, Cragg SJ, Kalló I, Turi GF, Coen CW, Greenfield SA. Histamine 
H3 receptors inhibit serotonin release in substantia nigra pars reticulata. J 
Neurosci. 2004;24:8704–10.

 70. Annamalai B, Ragu Varman D, Horton RE, Daws LC, Jayanthi LD, Rama-
moorthy S. Histamine receptors regulate the activity, surface expression, 
and phosphorylation of serotonin transporters. ACS Chem Neurosci. 
2020;5(11):466–76.

 71. Mezzomo NJ, Müller TE, Franscescon F, Michelotti P, Souza TP, Rosemberg 
DB, et al. Taurine-mediated aggression is abolished via 5-HT1A antago-
nism and serotonin depletion in zebrafish. Pharmacol Biochem Behav. 
2020;199: 173067.

 72. Reeds PJ. Dispensable and indispensable amino acids for humans. J Nutr. 
2000;130:1835S-S1840.

 73. Li J, Wang W, Liu F, Qiu L, Ren Y, Li M, Li W, Gao F, Zhang J. Genetically 
predicted 1091 blood metabolites and 309 metabolite ratios in relation 
to risk of type 2 diabetes: a Mendelian randomization study. Front Genet. 
2024;15:1356696.

 74. Teng J, Gao Y, Yin H, Bai Z, Liu S, Zeng H, PigGTEx Consortium, et al. A 
compendium of genetic regulatory effects across pig tissues. Nat Genet. 
2024;56:112–23.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Merging metabolomics and genomics provides a catalog of genetic factors that influence molecular phenotypes in pigs linking relevant metabolic pathways
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Methods
	Large White and Duroc pigs, blood collection and liver samples
	Whole genome genotyping and data filtering
	Targeted metabolomics and data cleaning
	Metabolomics data processing
	GWAS, meta-GWAS and heritability estimation
	Annotation of GWAS results
	Whole genome resequencing, variant calling and linkage disequilibrium analyses
	Identification and analyses of variants in the kynurenine 3-monooxygenase (KMO) gene for a major mQTL
	Pigs included in the longitudinal nutrigenetic study and analysis of kynurenine pathway metabolites
	Mathematical modelling of the kynurenine pathway (KP)
	Quantitative real time PCR (qPCR) and Western blotting analyses of KMO
	Correlation networks and Gaussian graphical models

	Results
	Metabolites have a broad range of heritability in pigs
	GWAS for metabolite traits in pigs identified numerous mQTL
	Putative causal genes for mQTL involved in biochemical and regulatory pathways
	Profiling associations among metabolite groups reveals cascade effects of candidate genes
	GWAS results provide comparative pig-human insights
	Identification of candidate causative mutations in pigs based on whole genome resequencing
	A case study: KMO haplotypes affect metabolites of the kynurenine pathway based on a nutrigenetic study
	Gaussian graphical models can reconstruct metabolic pathways in pigs

	Discussion
	Conclusions
	Acknowledgements
	References


