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Merging metabolomics and genomics sl

provides a catalog of genetic factors
that influence molecular phenotypes in pigs
linking relevant metabolic pathways
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Abstract

Background Metabolomics opens novel avenues to study the basic biological mechanisms underlying complex
traits, starting from characterization of metabolites. Metabolites and their levels in a biofluid represent simple molecu-
lar phenotypes (metabotypes) that are direct products of enzyme activities and relate to all metabolic pathways,
including catabolism and anabolism of nutrients. In this study, we demonstrated the utility of merging metabolomics
and genomics in pigs to uncover a large list of genetic factors that influence mammalian metabolism.

Results We obtained targeted characterization of the plasma metabolome of more than 1300 pigs from two popula-
tions of Large White and Duroc pig breeds. The metabolomic profiles of these pigs were used to identify genetically
influenced metabolites by estimating the heritability of the level of 188 metabolites. Then, combining breed-specific
genome-wide association studies of single metabolites and their ratios and across breed meta-analyses, we identi-
fied a total of 97 metabolite quantitative trait loci (mQTL), associated with 126 metabolites. Using these results,

we constructed a human-pig comparative catalog of genetic factors influencing the metabolomic profile. Whole
genome resequencing data identified several putative causative mutations for these mQTL. Additionally, based

on a major mQTL for kynurenine level, we designed a nutrigenetic study feeding piglets that carried different geno-
types at the candidate gene kynurenine 3-monooxygenase (KMO) varying levels of tryptophan and demonstrated
the effect of this genetic factor on the kynurenine pathway. Furthermore, we used metabolomic profiles of Large
White and Duroc pigs to reconstruct metabolic pathways using Gaussian Graphical Models, which included perturba-
tion of the identified mQTL.

Conclusions This study has provided the first catalog of genetic factors affecting molecular phenotypes

that describe the pig blood metabolome, with links to important metabolic pathways, opening novel avenues

to merge genetics and nutrition in this livestock species. The obtained results are relevant for basic and applied
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biology and to evaluate the pig as a biomedical model. Genetically influenced metabolites can be further exploited
in nutrigenetic approaches in pigs. The described molecular phenotypes can be useful to dissect complex traits
and design novel feeding, breeding and selection programs in pigs.

Background

The pig (Sus scrofa) is one of the most economically
important livestock species, serving as a primary sup-
plier of meat for human consumption. Additionally, it
is considered one of the most important non-rodent
biomedical models due to its physiological similarities
to humans [1]. Specifically, as the pig is a single-stom-
ached omnivore with gut physiology and metabolism
comparable to humans, it is a valuable model for study-
ing nutrition and metabolic disorders that are relevant
to humans.

Metabolomics is the study of the plethora of metabo-
lites, which are small biological molecules that act as
intermediates or end products of chemical reactions in
an organism [2]. Metabolites represent molecular phe-
notypes (also indicated as metabotypes) that are the
direct products of the activities of enzymes pertain-
ing to metabolic pathways, including catabolism and
anabolism of nutrients. The level of a metabolite in a
biofluid, its uptake, its transfer and its regulatory mech-
anisms are therefore components of a metabotype.
Therefore, metabotypes are considered simple and
“internal” phenotypes that can be used to dissect more
complex “external” phenotypes or end phenotypes [3]
that have relevant and direct economic values. In pigs,
production performances (e.g., growth rate, fat deposi-
tion, lean meat deposition, feed conversion rate) are the
end phenotypes [4]. Metabolic profiles are quite sta-
ble, meaning that their baseline levels are only partially
affected by environmental perturbations. As a result,
the heritability of many metabotypes can be quite high,
providing opportunities to uncover the genetic factors
responsible for their variation across individuals in a
population [5].

In humans, the combination of metabolomics for
blood-derived biofluids and genome-wide association
studies (GWAS) has already proven successful in iden-
tifying genetic factors that influence metabotypes, also
known as genetically influenced metabolites (GIM) [6].
This information can be used to decipher the genetic
mechanisms that affect metabolism and to better
describe other complex physiological conditions and
diseases [7—10]. Since metabolites offer molecular phe-
notypes that are close to an individual’s genotype pro-
file, a relatively smaller number of individuals (typically
a few hundred) is required to obtain meaningful results
than would be needed in a GWAS for more complex

phenotypes [11]. Genetically influenced metabolites
identified in humans have been shown to generally have
greater effect sizes than most other complex traits and
diseases and can be explained by loci that are often
located in or near genes that encode enzymes, metab-
olite transporters, and regulators of metabolism [7, 8,
11].

A few studies have reported preliminary characteriza-
tions of the livestock metabolomes by investigating dif-
ferent biofluids for various purposes [4, 12]. These studies
focused primarily on specific questions about the physi-
ological and health status of the animals and the effects of
feeding on their metabolic patterns, leading to the identi-
fication of some biomarkers that are useful for monitor-
ing and diagnostic purposes (e.g., [13—17]). Other studies
have investigated how genetic factors can influence ani-
mal metabolomes. Initial studies focused on breed differ-
ences in metabolomic profiles and later studies defined
how genomic variants are associated with the levels of
certain metabolites in plasma, serum, milk, and in vari-
ous tissues [18—24].

In this study, we demonstrated the utility of merg-
ing metabolomics and genomics in pigs to uncover
some of the genetic factors that influence mammalian
metabolism. We obtained a targeted characterization of
the plasma metabolome for two different Western pig
breeds, Large White and Duroc, using sib-tested ani-
mals, reared in standard environments. We then used the
metabolomic profiles of these pigs to identify GIM (i) by
estimating the heritability of metabolite levels, (ii) identi-
fying genomic regions associated with metabolite levels
(defined as metabolite Quantitative Trait Loci or mQTL)
through GWAS, (iii) performing systems biology analyses
of metabolic pathways, and (iv) constructing a human-
pig comparative catalog of genetic factors influencing the
metabolomic profile. Additionally, we designed a nutrige-
netic study based on a major mQTL to further validate
its effects. Considering that many metabolites are rel-
evant in animal nutrition, this study may open important
opportunities for using GIM to integrate genetic infor-
mation into pig nutrition.

Methods

Large White and Duroc pigs, blood collection and liver
samples

A total of 920 Large White pigs (303 castrated males and
617 gilts, obtained from 86 boars and 358 litters) and 389
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Duroc pigs (120 castrated males and 269 gilts, obtained
from 66 boars and 189 litters) were sampled across 26 dif-
ferent slaughtering days. The animals were from triplets
of siblings from the same litter, consisting of 2 females
and 1 castrated male. These pigs were individually per-
formance tested at the Central Station of the National
Pig Breeder Association (ANAS) for genetic evaluation
of a boar from the same litter (sib-testing). Pigs started
their performance evaluation at 30-45 days of age and
continued until they reached a live weight of 155+5 kg
[25]. All animals were fed the same standard commercial
feed for fattening pigs, following the production rules of
the Parma and San Daniele dry-cured ham consortia. At
the end of the evaluation, the animals were transported
to the same commercial abattoir, where they were slaugh-
tered in the morning (07.00-08.00 a.m.), following stand-
ard procedures, including a 12-h overnight fasting period
and the use of electrical stunning.

For each pig, 2 aliquots of blood were collected at the
abattoir just after jugulation, directly from the drain-
ing carotid artery into a tube with ethylenediamine-
tetraacetic acid (EDTA) to prevent coagulation for the
preparation of plasma (Vacutest Kima, Padua, Italy).
After collection, blood samples were refrigerated on ice
for 2 h. One aliquot was then stored at — 20 °C for subse-
quent DNA extraction. The other aliquot was used for the
preparation of plasma after centrifugation at 3000 rpm
for 10 min at+4 °C. The plasma was then divided in sev-
eral additional sub-aliquots that were stored at — 80 °C
for metabolomic analysis. At the abattoir, liver samples
were collected from the same pigs and immediately fro-
zen in liquid nitrogen. These samples were then stored at
—80°C.

Whole genome genotyping and data filtering

DNA was extracted from blood samples stored at — 20 °C
using the Wizard Genomic DNA Purification kit (Pro-
mega Corporation, Madison, W1, USA). All Large White
and Duroc pigs were then genotyped with the Illumina
PorcineSNP60 BeadChip v.2 (Illumina Inc., San Diego,
CA, USA), which analyzes 61,565 single nucleotide pol-
ymorphisms (SNPs). This SNP panel was also used to
genotype the piglets included in the nutrigenetic lon-
gitudinal study (see below). Genotyping data were fil-
tered using PLINK v.1.9, discarding animals with a call
rate <0.9 and SNPs with a call rate <0.95, minor allele fre-
quency (MAF)<0.05, and Hardy—Weinberg equilibrium
P<0.001, and SNPs that are located on sex chromosomes
or not uniquely mapped on the Sscrofall.l genome ver-
sion [26].
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Targeted metabolomics and data cleaning

Metabolomics measurements of plasma metabolites were
carried out using the Biocrates AbsoluteIDQ p180 Kit
(Biocrates Life Science AG, Innsbruck, Austria), which
allows for the quantification of a panel of 186 metabolites
(or 188 metabolites, based on a subsequent upgrade),
including 21 amino acids, 19 (or n. 21) biogenic amines,
1 hexoses’ pool, 40 acylcarnitines, 15 sphingomyelins, 76
phosphatidylcholines, and 14 lysophosphatidylcholines.
The list of all metabolites with the full biochemical name
and abbreviation is in Additional file 1: Table S1. The ana-
lytical platform consisted of a Serie 200 HPLC system
(PerkinElmer, Waltham, Massachusetts, USA) coupled
with an API 4000 QTrap mass spectrometer (AB-Sciex,
Foster City, CA, USA). Plate preparation followed the
manufacturer’s instructions (Biocrates Life Sciences AG).
In house quality controls, obtained by pooling equal vol-
umes of plasma from 10 randomly chosen and unrelated
pigs, were included in each of the 19 analyzed plates.
The analytical process was carried out using the MetlQ
software package, which is an integral part of the Abso-
luteIDQ p180 Kit (Biocrates Life Science AG). Concen-
trations of the analyzed metabolites were reported in uM
units.

Data quality control was carried out as previously
described [27]. In summary: (i) metabolites with all miss-
ing values (NA) or all zero values in at least one plasma
pool were excluded; (ii) samples were identified as outli-
ers if measured concentration for the sample deviated 1.5
times the interquartile range below or above the corre-
sponding median for>30% of the analyzed metabolites;
(iii) animals with a missing value for at least one of the
analyzed metabolites were eliminated; and (iv) metabo-
lites with an inter-plate coefficient of variation <30%,
as estimated by the in-house quality controls, were
removed. Subsequently, for each metabolite, zero val-
ues were imputed using random values generated from a
uniform distribution ranging from zero to the minimum
non-zero measured concentration.

The metabolomics and genomics data were merged,
resulting in a final dataset for Large White pigs that
included 787 animals (256 castrated males and 531
gilts) X 169 metabolites x 45,423 SNPs, whereas for Duroc
pigs the dataset included 286 animals (87 castrated males
and 199 gilts)x164 metabolitesxand 38,631 SNPs.
Ratios between metabolite concentrations were also cal-
culated, resulting in 14,196 and 13,366 ratios for Large
White and Duroc breeds, respectively.

Data were processed in the R v.4.2.2 [28].

Metabolomics data processing
For GWAS, the Large White and Duroc datasets were
processed separately, using the R v.4.2.2 using the
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function “boxcox” of the “MASS” package [28]. Briefly,
data were normalized using a Box-Cox transformation
(in a regression model) and then cleaned using linear
regression models to remove the effects of systematic
environmental and technical factors, as previously
described [27]. For Box-Cox transformation, selection of
the A parameter followed a grid search (3001 tested val-
ues in the range [— 3, + 3]) using maximum likelihood for
a regression model that included sex, carcass weight, and
blood collection date. To remove the effects of system-
atic environmental and technical factors, Box-Cox trans-
formed data were regressed on covariates (fixed effects:
animal sex, animal carcass weight, and blood collection
date) and residuals were obtained for GWAS, using the
following model:

J—1
yi = Bo+ Buwi+ Bssi+ Y _ Bcjdij + ei, 1)
=1

where y; is the level of the metabolite for the ith animal,
B, is the intercept term, w; indicates the carcass weight
of the ith animal, s; is a dummy variable representing the
sex of the ith animal, d;,...,d,; ;) is a set of J=26 dummy
variables coding the blood collection date for the ith ani-
mal, while B,, B and B are the corresponding regres-
sion coefficients, and ¢, is the residual. Metabolite levels
adjusted for confounding effects were obtained by esti-
mating the residuals as:

e =y~ i (2)
with:
J—1
yi = bo + buwi + besi + > _ bjdy, 3)
j=1

where by, b,, by be; (j=1..., J-1) are the least squares
estimates of model parameters.

For network generation, data were processed as
described above but using a common X\ value to normal-
ize the entire metabolic profile. This common A value was
that which was shared by most metabolites based on the
set of \ values within the 95% confidence interval of each
tested A value. Then, the transformed data were regressed
on covariates as described above (Egs. (1)—(3)) and resid-
uals were obtained.

Data were processed both separately for each breed
and combined across breeds. For the combined dataset,
breed was added as a covariate in Eq. (1).

GWAS, meta-GWAS and heritability estimation
We carried out breed specific GWAS and then subjected
the results to meta-analysis. Association studies were

Page 4 of 27

based on the additive genetic model. Using GEMMA
v.0.94.1, we implemented a univariate linear mixed
effect model that accounted for population stratifica-
tion through the generation and inclusion of a centered
genomic relationship matrix (K) [29]. The following lin-
ear mixed effect model was adopted:

y=Wa+x8+g+e, (4)

where y (nX 1) is a vector containing the metabolite level
for the # animals (residuals of the normalized metabolite
level; Eq. (1) to Eq. (3)), W (nXk) is a covariate matrix
with k=1 (a column of 1 s) and « is the k-dimensional
vector of covariate effects, x (nX 1) is the vector contain-
ing genotypes for the ith SNP (coded as 0, 1, 2, accord-
ing to the number of copies of the minor allele), S is the
additive fixed effect of the ith SNP on the metabolite lev-
els, g~N(0, ng K) is a multivariate Gaussian polygenic
effect, with covariance matrix proportional to the rela-
tionship matrix K (#x#n), and e~N(0, 6%, I) is a multi-
variate Gaussian vector of uncorrelated residuals. The
assessment of the association between each SNP and the
metabolite level was obtained by testing the null hypoth-
esis Hy: P=0 using the Wald test. GWAS results were
processed in the R v.4.2.2 environment to generate Man-
hattan plots [28]. The percentage of variance explained
(PVE) by a given SNP was calculated as described in Shin
et al. [30]. Briefly, PVE was estimated as follows:

282 x MAE x (1 — MAF)
22 x MAF x (1 — MAF) + (se(B))” x 2N x MAF x (1 — MAF)
(5)
where: E , se(B\ ), and MAF are, respectively, the effect size
estimate, the standard error of the effect size estimate,
and the minor allele frequency of a given SNP. N repre-
sents the sample size.

Significant associations in single metabolite GWAS
were detected by adopting a linkage disequilibrium (LD)-
based Bonferroni correction to identify suggestive asso-
ciations (assuming a level of a=0.05 and a number of
independent tests equal to the number of SNPs with an
LD ?<0.25 [31]). Determination of LD was carried out
as described in Monir and Zhu [31] using PLINK v.1.9
[26]. This analysis returned 23,076 and 13,269 independ-
ent SNPs for Large White and Duroc pigs, respectively.
Significance of metabolite ratios for GWAS considered
the p-gain statistics, estimating the critical level for the
p-gain (threshold) as 10 times the number of tested ratios
(assuming a level of a=0.05) [32].

GWAS results were then combined in a meta-analysis
(meta-GWAS) using the weighted Z-score model imple-
mented in Metal software (release 2011) [33]. The model
considered the direction of effect (f) and P-value of the
association of a given SNP that was obtained for each

PVE =
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breed by combining them with weights based on the
sample sizes. The Bonferroni corrected hypothesis test
for association with a given metabolite accounted for the
31,007 SNPs that were shared and tested in both breeds,
whereas the LD-based Bonferroni correction accounted
for 20,200 independent SNPs. The critical level for p-gain
in meta-GWAS of metabolite ratios was set at 10 times
the number of tested ratios (assuming a level of a«=0.05).

Narrow sense heritability, based on pedigree records
of a total of four generations (h%,), was estimated using
the R package “gap” v.1.5-3. For this estimation, we used
Eq. (4) including a kinship matrix. Genomic heritability
(h%g\p) Was estimated from the univariate linear mixed
effect model (Eq. (4)) including a genomic relationship
matrix, as implemented in GEMMA v.0.94.1 [29].

Annotation of GWAS results

Distinct mQTL regions on the same chromosomes were
declared when significant SNPs (identified as described
above, combining the different approaches) were sepa-
rated by non-significant SNPs for a region of at least 1
Megabase (Mb) in the same breed(s) in which the mQTL
were identified (considering the high level of LD in these
pig populations) [34, 35]. When an mQTL was identified
in different breeds and for different metabolites, we con-
sidered a distance of 0.5 Mb. The most significant SNP-
metabolite pair (or ratio, considering the p-gain) was
then used to identify the corresponding mQTL.

GWAS results were annotated by retrieving the set
of annotated protein coding genes located in the +500-
kb flanking regions of the significant SNP from the
Sscrofall.l National Center for Biotechnology Informa-
tion’s (NCBI) GFF file. Functional relevance of genes was
evaluated by detailed analysis of the scientific literature,
the Gene Cards database, and known metabolite-gene
associations retrieved from the GWAS Catalog, PhenoS-
canner V2, KEGG, HMDB, and PubChem Chemical Co-
occurrences in Literature database [36—41].

Whole genome resequencing, variant calling and linkage
disequilibrium analyses

A total of 88 Large White, 35 Duroc and 35 Lan-
drace pigs underwent whole genome resequencing
at~20 X, with individual DNA extracted using the pro-
tocol described above. The Large White and Duroc pigs
were a subset of the performance tested pigs described
above, chosen including pigs from different litters. The
Landrace pigs were other performance tested animals
provided by ANAS (these pigs were not used for metab-
olomic analyses). The inclusion of Landrace pigs was
specifically for comparative analyses with the other two
breeds for the chromosome region that includes a major
mQTL, as described later. Genomic DNA was extracted
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and purified as described by Bovo et al. [25] Sequenc-
ing libraries were produced (150-bp paired ends; 400-
bp insert size) and sequenced on a BGISeq500 machine.
Reads were mapped on the Sscrofall.l reference genome
using the BWA v.0.7.17 and then deduplicated with Pic-
ard v2.1.1  (https://broadinstitute.github.io/picard/)
[42]. Variant calling and filtering were performed using
GATK4 haplotypecaller and variantfiltration (hard-
filter; basic filtering thresholds for SNP and insertions/
deletions or indel, as recommended in the manual),
respectively [43]. Only bi-allelic variants located within
the + 500-kb flanking regions of each significantly associ-
ated SNP were retained for further analyses. Allele fre-
quencies were then estimated for each population. The
Variant Effect Predictor (VEP) tool was utilized to map
gene positions and predict the effect of each variant (in
conjunction with the SIFT tool for assessing potential
deleterious effects of missense variants on translated pro-
teins) [44]. Subsequently, LD analyses were carried out
between the SNPs identified in the GWAS (mQTL) and
the variants found in the candidate genes. These analyses
were carried out separately for each breed using PLINK
v.1.9 [26].

Identification and analyses of variants in the kynurenine
3-monooxygenase (KMO) gene for a major mQTL
Haplotype information for the KMO gene was recon-
structed using whole genome resequencing data obtained
from the whole genome sequence of the Large White,
Duroc, and Landrace pigs described above. Two major
haplotypes were identified and named based on the two
alleles of the lead SNP (rs81278711-A and rs81278711-QG)
associated with the level of plasma kynurenine, as deter-
mined in the GWAS. The whole genome resequence data
was also used to obtain allele frequencies in the same
breeds.

Whole genome sequencing datasets produced from 20
different DNA pools were obtained from Bovo et al. [45],
each containing DNA of 30-35 pigs, representing 19 dif-
ferent European local pig breeds (Alentejana and Bisara
from Portugal; Majorcan Black from Spain; Basque and
Gascon from France; Apulo-Calabrese, Casertana, Cinta
Senese, Mora Romagnola, Nero Siciliano and Sarda from
Italy; Krskopolje pig from Slovenia; Black Slavonian and
Turopolje from Croatia; Moravka and Swallow-Bellied
Mangalitsa from Serbia; Schwibisch-Hallisches Schwein
from Germany; Lithuanian indigenous wattle and Lithu-
anian White old type from Lithuania), as well as a Euro-
pean wild pig population. Polymorphisms in the KMO
gene region were identified and annotated as described
previously. Allele frequencies at the polymorphic sites
were estimated by counting the number of reads that
cover the variant positions.
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Using KMO missense polymorphisms identified from
whole genome sequence of the Large White, Duroc, and
Landrace pigs and of the DNA pools, we evaluated sin-
gle amino acid polymorphisms in relation to both (i) the
KMO protein sequence through an analysis based on
InterPro (ii) and the KMO protein structure, based on
the model retrieved from the SwissModel repository [46,
47].

Genotyping data for the KMO exon 17
indel (that adds/eliminates one amino acid;
£.12489135_12489136insACC) in the piglets included
in the longitudinal nutrigenetic study (see below) was
obtained by Sanger sequencing of a 414 bp amplicon
produced by PCR amplification using primers designed
on exon 17 of the same gene (forward: 5-CAGGACTTC
AGCTAGTGGTCA-3; reverse: 5-ATTTTGATCCTG
TTTTGGTCAC-3'). PCR was performed on an Applied
Biosystem SimpliAmp Thermal Cycler (Thermo Fisher
Scientific Inc., Waltham, MA, USA) in a total reac-
tion volume of 14 pL including: 2 X Kapa Hifi HotStart
ReadyMix PCR kit (Kapa Biosystems, Boston, MA, USA);
20-50 ng of template DNA; 10 pmol of each primer.
PCR profile was as follows: an initial denaturation step at
95 °C for 5 min; 35 cycles of alternate temperatures (30 s
at 95 °C, 30 s at 60 °C; 30 s at 72 °C) followed by a final
extension step at 72 °C for 5 min.

Pigs included in the longitudinal nutrigenetic study

and analysis of kynurenine pathway metabolites

A total of 16 weaned Large White X Landrace crossbred
piglets were included in the nutrigenetic experiment.
Genotyping data for these piglets derived from the Illu-
mina PorcineSNP60 BeadChip v.2 (Illumina Inc.; see
above). Eight of these piglets were homozygous for the
rs81278711-A allele and the exon 17 deletion, while the
other 8 were homozygous for the rs81278711-G allele
and for the exon 17 insertion. These piglets came from
4 different litters, with the alternative genotypes evenly
distributed within each litter (2+2). The piglets were
weaned at 28 days of age (day O of the trial, with aver-
age bodyweight=6.825+1.690 kg) and then penned in
individual cages. Throughout the experiment, unless
otherwise specified, all piglets were fed a standard post-
weaning diet, ad libitum. The diet was formulated to be
slightly deficient compared to the NRC 2012 feeding
requirements, but adequate for the European standards,
and without antimicrobial additives or pharmaceuticals
[48]. More specifically, the diet was formulated to con-
tain a 16.5% standard ileal digestible Trp to Lys ratio, a
value marginally low, kept to emphasizing the potential
effects of KMO genotypes and the subsequent addition
of Trp to the diet. Information on the diet and related
amino acid content is available in Additional file 2: Tables
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S2, S3. On day 7, all piglets (with an average bodyweight
of 7.04+1.71 kg) had their first blood sample taken after
the morning meal. They were then fed the next meal,
which contained a quantity of Trp equal to twice the
required amount by doubling the supplementation com-
pared to the basic diet. After 3 h, a second blood sample
was collected. All blood samples were obtained through
venipuncture in the vena cava, collected in EDTA tubes,
which were then centrifuged at 3000xg for 10 min at
4 °C. Plasma samples were aliquoted and then stored
at — 80 °C for subsequent targeted metabolomic analy-
ses, using an LC-MS/MS platform at Bevital SA (Ber-
gen, Norway) to quantify several key metabolites of the
kynurenine pathway [see Additional file 3: Figure S1],
as previously described: tryptophan (Trp), kynurenine
(KYN), 3-hydroxykynurenine (HK), kynurenic acid (KA),
xanthurenic acid (XA), anthranilic acid (AA), 3-hydroxy-
anthranilic acid (HAA), and quinolinic acid (QUIN) [49].
The piglets were sacrificed on day 10 with an intracardiac
injection of Tanax® (0.5 mL/kg bodyweight) after being
anesthetized with Zoletil 100 (15 mg/kg bodyweight).
Liver samples were then collected, immediately frozen
in liquid nitrogen and stored at — 80 °C for subsequent
analyses.

Mathematical modelling of the kynurenine pathway (KP)
Levels of KP metabolites between the two KMO geno-
types (as derived from the nutrigenetic experimental
design) were compared using the Wilcoxon Rank Sum
Test. Results with P<0.05 were considered statistically
significant [see Additional file 2: Tables S4]. The KP
metabolite levels were further analyzed using a kinetic
modeling approach based on a set of ordinary differential
equations (ODE). The model took all reactions mediated
by enzymes endowed with a Michaelis—Menten kinetics
into account and all the enzymes operating in their first-
order regime. In this model, each reaction was described
with a reaction rate (velocity) defined as:

_ Vmax - [S]

V—mkk'[s], (6)

provided that [S] <« Kjs, where K, indicates the Michea-
lis-Menten constant (affinity for the substrate), v,,,.. is the
maximal velocity and [S] is the substrate concentration.
Considering the dependence from the enzyme levels, this
equation can be rewritten as:

kcat
V=
Ky

-[S]- [E], 7)

where k_,, identifies the turnover number and [E] is the
total amount of enzyme. Based on the reactions scheme
shown in Additional file 3: Figure S1, we set up a system
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of ODE [see Additional file 2: Table S5] that describes the
levels of KP metabolites at the steady states [see Addi-
tional file 2: Table S6]. The 3-hydroxykynurenine (HK)
levels did not present any difference in concentration
between the 2 KMO genotypes (P>0.05), allowing us to
assume the following equivalence:

[HK ¢81978711-66] = [HK 81978711 - anl- (8)

Considering the study of metabolites at the steady state,
we can express the dependence of HK concentrations as a
function of Trp concentrations as:

_ kxmo - [KYN]
T kkyNuz
_ krposipo
 kyNu2 + ka2
_ kkmo [Trp]
kkyNu1 +kkmo + kkaTi

[HK*]

where each k represents a kinetic constant specific for
each enzyme entering the KP route. Under the hypoth-
esis that only ko is different in the 2 pig groups, the
Eq. (8) and Eq. (9) can be combined, and the equivalence
can be simplified and expressed as:

kr581278711—GG

KMO
81278711-GG
(kicynun + kxat + kgyio )

kr581278711—AA
KMO

(10)

kr58127871 1—AA)

(kxynut + kxart + ko

This implies that equal levels of 3-hydroxykynurenine
are maintained only if kxao > kxynui + kxari (and
considering equal enzyme concentrations). As these con-
stants are not available for porcine enzymes, we relied
on values derived in humans by Stavrum et al. [50] [see
Additional file 2: Table S7] that confirmed this inequal-
ity (kgvo=22 s mM™}, kynu; 046 s™' mM™! and
kiar1=2-08 s mM™). Considering that kg0 = %‘\‘4‘,
changes in vxaro can be attributed to changes in affinity
for the substrate (K},), or to the turnover number (k,,),
or to the total amount of enzyme ([E]).

Quantitative real time PCR (qPCR) and Western blotting
analyses of KMO

Total RNA was extracted from liver samples of the 16
piglets in the longitudinal nutrigenetic study (8 piglets
homozygous for the rs81278711-A allele and 8 homozy-
gous for the rs81278711-G allele), as well as from an
additional 8 Large White pigs that were used for metabo-
lomic analyses with the Biocrates AbsoluteIDQ p180 Kit
(Biocrates Life Science AG; see above): 4 gilts for each of
the two homozygous genotypes that were all slaughtered
on the same day (description of these pigs and their diet
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is reported above). The RNA was reverse transcribed
and used for qPCR of KMO, with beta-2-microglobulin
(B2M) serving as the housekeeping gene. qPCR reactions
were performed in triplicate for each sample using the
Kapa SYBR Fast qPCR Master Mix kit (Kapa Biosystems,
Roche, Basel, Switzerland) on a QuantStudio 7 instru-
ment (Thermo Fisher Scientific, Waltham, MA, USA).
Average Cts were calculated for the pigs with the two
KMO genotypes and the relative gene expression was cal-
culated as 2744t for each experimental design.

Proteins were extracted from the liver tissues of the
same pigs, with 3 technical replicates for each sample. A
total of 20 pg of proteins was separated by Sodium Dode-
cyl Sulphate—PolyAcrylamide Gel Electrophoresis (SDS-
PAGE) using 12% polyacrylamide resolving gels with a
4% stacking gel (Gibco BRL/Thermo Fisher Scientific)
for each sample. The proteins were electrophoretically
transferred to 0.45 um PVDF membranes and then incu-
bated overnight at 2-8 °C with the primary Anti-KMO
antibodies (Abcam, UK, ab130959) at a concentration of
2 pg/mL. After washing, the membranes were incubated
with the secondary antibody. Subsequently, membranes
were scanned, and the average band density was normal-
ized to the average band density. Additional details on
qPCR, Western blotting analyses and the results obtained
are provided in Additional file 4: Text S1.

Correlation networks and Gaussian graphical models

Metabolomic data from the Large White and Duroc pigs
were used to assess the dependence between metabo-
lite concentrations through Gaussian Graphical Mod-
els (GGM), which are undirect probabilistic graphical
networks that estimate the conditional dependence
structure among variables [12, 49]. GGM are based on
partial correlation coefficients (PCC), which are pair-
wise Pearson’s correlation coefficients (r) corrected for
all remaining variables. For comparison of the results, we
calculated both simple Pearson’s correlation coefficients
and full-order partial correlations by a matrix inver-
sion operation. GGM were constructed both for each
breed separately and for the combined breeds. Because
Large White and Duroc had different numbers of ani-
mals evaluated (787 and 286, respectively), potentially
affecting the estimation of PCC and the related statisti-
cal significance, 2 metabolites were considered linked if
they had a PCC>0.3 [7]. Additionally, a GGM was con-
structed separately for each breed, incorporating the
genetic effects of the specific mQTL that were identified
in the meta-GWAS for that breed. Briefly, metabolites
were also regressed against the identified SNPs (coded as
dummy variables) and then simple Pearson’s correlations
and PCC were calculated. PCC were computed with the
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package R package ppcor v1.1. The networks were visual-
ized using Cytoscape v.3.0.1 [51].

Results

Metabolites have a broad range of heritability in pigs

We produced targeted plasma metabolomic profiles,
including metabolites from six analyte classes [acylcar-
nitines, AC; amino acids, AAc; biogenic amines, BA;
hexoses (including glucose), HE; glycerophospholip-
ids (including phosphatidylcholines, PC; and lysophos-
phatidylcholines, lysoPC); and sphingomyelins, SM; see
Additional file 1: Table S1], in Large White and Duroc
breeds. We estimated the narrow sense heritability (h%p)
of these metabolites using mixed linear models with
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pedigree data and then compared this information with
the genomic heritability (h%p), estimated using geno-
typing data obtained from a 60 k SNP panel (Fig. 1la—d;
see Additional file 2: Table S8). The heritability estimates
averaged by metabolite class is reported in Table 1. Herit-
abilities estimated using the two approaches were simi-
lar, with average values across breeds of 0.22+0.15 (h?,)
and 0.19+0.13 (h%p). The highest heritability estimates
were observed in Large White pigs for phosphatidylcho-
line PC aa C40:5 (h*,=0.69+0.10, h%;,=0.52+0.06)
and in Duroc pigs for PC aa C38:6 (h*,=0.73%0.16,
h%p=0.58+0.12) and PC aa C40:6 (h*,=0.600.16,
h%p=0.63£0.11). When heritability estimates were
related to the number of carbon atoms and double
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2
hsne

L

fa \( c )
0.8 MAcylcarnitine ™ Aminoacid ™ Biogenicamine M Lysophosphatidylcholine = Phosphatidylcholine M Sphingomyelin * Sugars 0800
06 05600
o .
s N . L%
o oa of 0400 K v al
" .
02 0200 B eg % %
2.
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\ ) 14 [*%
'

Biogenicamine M Lysophosphatidylcholine

Phosphatidylcholine ® Sphingomyelin = Sugars

Fig. 1 Heritability estimate profiles of different groups of metabolites in the two breeds. a Genomic heritability (h%y) in Large White pigs. b
Genomic heritability (hZSNP) in Duroc pigs. ¢, d Scatter plots correlating narrow sense heritability (th) and genomic heritability (hZSNP) in Large White
and Duroc pigs, respectively (Pearson’s correlation between the two measures of heritability were 0.90 in Large White and 0.76 in Duroc). All details,

including information on h%,, are reported in Additional file 1: Table S8

Table 1 Estimates of pedigree-based heritabilities (th) and of genomic heritabilities (hZSNP) of different metabolite classes in the Large

White and Duroc breeds

Metabolite classes Large White Duroc

h%, h’snp h?% h%snp
Amino acids 0.241+0.079 0.238+0.055 0.097 +£0.095 0.145+0.100
Essential amino acids® 0.221+0.078 0.211+£0.041 0.067 +£0.080 0.108+0.088
Nonessential amino acids® 0.249+0.078 0.242+0.042 0.097+£0.091 0.162+0.102
Acylcarnitines 0.054+0.066 0.063+0.073 0.080+0.118 0.056+0.089
Biogenic amines 0.192+0.108 0.234+0.128 0210+£0.151 0.245+0.131
Glycerophospholipids 0.300+0.136 0.277+0.112 0.192+0.156 0.172+0.127
Sphingomyelins 0.331+0.108 0.280+0.074 0.207+£0.121 0.217+0.085
Sugars 0.290 0.069 0.262 0.020

The mean and standard deviation are reported
2 His, lle, Leu, Lys, Met, Phe, Thr, Trp, Val
b Ala, Arg, Asn, GIn, Glu, Gly, Pro, Ser, Tyr
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bounds of 3 analyzed metabolite classes (acylcarnitines,
glycerophospholipids and sphingomyelins), some corre-
lations emerged [see Additional file 3: Figures S2 and S3].
Other details on the relationship between the metabolite
chemical structure and their heritability estimates are
reported in Additional file 4: Text S2.

GWAS for metabolite traits in pigs identified numerous
mQTL

We initially conducted GWAS for the concentration of
the analyzed metabolites separately in Large White pigs
and Duroc pigs, followed by a combined meta-analysis.
In Large White pigs we identified significant associations
for 56 metabolites (accounting for 68 association signals,
totaling 33 different mQTL) and in Duroc pigs for 22
metabolites (accounting for 25 association signals, total-
ing 24 different mQTL) (see Table 2 and Additional file 1:
Table S9). Nine metabolites showed significant asso-
ciations in both breeds: for 6 of these, different mQTL
were identified in the 2 breeds, while for the other 3
metabolites, the same locus was identified in both breeds
(Fig. 2a). The meta-analysis provided associations for
a total of 42 metabolites with 48 different associations
across 26 mQTL. Among these associations, 14 were
found to be novel in the combined dataset (Fig. 2a; see
Additional file 1: Table S10), while 26, 5, and 3 were also
identified in, respectively, the Large White, the Duroc,
and in both breeds (Table 2).

Summarizing the results of these three GWAS, associ-
ated SNPs were identified for~46% of the investigated
metabolites, totaling 63 different mQTL. Multiple loci
were identified for 23 metabolites (up to 4 for citrul-
line). One locus on Sus scrofa chromosome (SSC) 6, one
on SSC7, and one on SSC12 were associated with the
concentration of 13 glycerophospholipids (all in Large
White pigs and meta-analysis), 6 glycerophospholipids
(identified in meta-analysis and Large White pigs), and
11 glycerophospholipids (one also in Duroc pigs), respec-
tively. On average, the percentage of variance explained
(PVE) for the peak SNP underlying the identified mQTL
was 5.45+3.40%, with higher values observed in Duroc
(mean=9.45+3.51%) compared to Large White pigs
(mean=4.26+2.26%): the top three values were for acyl-
carnitine C18:2 (23.1%) and acetylornithine (Ac-Orn:
18.1%) in Duroc pigs and kynurenine in Large White
pigs (16.5%). The most significant association was found
for kynurenine with SNPs on SSC10, in both the Large
White breed and in the meta-analysis (P=1.83x 107
and P=7.88x107%). The most significant association
in Duroc pigs was identified for acylcarnitine C18:2 on
SSC15 (P=4.99x 107'8), again matching the highest val-
ues of the PVE for the same SNP [see Additional file 1:
Table S9].
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To confirm and further expand these results, we also
analyzed the ratios of metabolite concentrations as
metabolite traits. Similar studies in humans have already
shown that these combined metabotypes can signifi-
cantly reduce variation [2]. This is especially true when a
pair of metabolites are closely interdependent, acting as
substrates and/or products in the same enzymatic reac-
tion or pathway or are connected through a common
regulatory system [2]. A total of 594 and 39 ratios showed
significant associations (considering a stringent p-gain
threshold; Fig. 2b) in Large White and Duroc popula-
tions, respectively, which identified a total of 49 mQTL.
Of these, 34 were not previously identified with the sin-
gle metabolite approach: 15 in Large White, 4 of which
were also found in the meta-analysis; 18 in Duroc, 2 of
which were also found in meta-analysis; and one only in
the meta-analysis (see Additional file 1: Tables S9 and
$10). Of the large number of significant mQTL identified
for Large White pigs, many ratios involved at least one
glycerophospholipid (570 ratios). Most of these ratios (n.
470) were identified for the same SSC6 region that was
also associated with single glycerophospholipids, fur-
ther supporting the presence of a major mQTL in this
chromosome region that affects the metabolism of these
molecules.

By combing the results obtained for the metabolite
ratios with those obtained for single metabolites, we
identified a total of 97 mQTL (Table 2; see Additional
file 1: Table S11) for 126 metabolites, which accounted
for 72.4% of the analyzed molecules: 18 mQTL were asso-
ciated with amino acids; 9 with acylcarnitines; 13 with
biogenic amines; 38 with phosphatidylcholines; 13 with
lysophosphatidylcholines; and 20 with sphingomyelins.

Putative causal genes for mQTL involved in biochemical
and regulatory pathways

To prioritize likely causal genes for the identified
mQTL, we adapted the strategies proposed by pre-
vious GWAS for metabolites in humans (e.g., [52,
53]). We retrieved information from: (i) a hypothesis-
free genetic approach based on genomic annotations
within 1 Mb centered at the lead SNP; (ii) specific
metabolite-gene associations obtained from 6 data-
bases and a manually curated literature survey. Since
most of the available biological knowledge is derived
from human studies, we utilized this information to
conduct a first human-pig comparative analysis of
GIM, as outlined below. From this analysis, approxi-
mately two thirds of the mQTL identified potential
causal genes: one gene was deemed plausible for 51
mQTL, while for the remaining 13 mQTL, 2 or 3 genes
could be equally plausible. Thirty-four of these genes
encode enzymes that are directly involved in metabolic
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SSC:position® Single metabolite analyses

Metabolite ratio analyses

Candidate gene(s)"

Metabolite® pe GWAS Metabolite ratios® p-gainf  GWAS?

1:13637577 - - - PCaa(C320/PCaaC344;  152x10° D SYNET', VIP'

PC aa C32:0/PC ae C32:2
1:30232849 lle 208x10% Meta - - - SLC2A12!
1:31868855 O, Arg 771x107% Meta, LW Arg/Om; Arg/Lys 249x10%" LW, D, Meta ARGI®
1:127957580  PCae C34:3 339%x10% D - - - CATSPER2"
1:130488207 - - - SM C16:0/SM C18:0 167x10° D CHPI'
1:131201231 - - - C4/C5 178x10° LW WD°
1:133696865  PC ae C34:3 183%x10% D - - - MEIS2"
12270725631 Cit 144x107"% Meta, LW - - - ASS1¢
1272712128 - - - PC ae C38:4/PC ae C40:5 144%10° LW GFI1B', SURF4", CEL®
1:273242436  Sarcosine 349%107% Lw - - - SARDH®
2:9548890 PC ae C420 6.08x10™ Meta, D PC aa C38:3/PC aa C40:4 (9) 3.01x10° D FADS1¢, FADS2°, FADS3°
2:45628435  SMC180 170x107% LW PC aa C32:0/PC ae C34:1 342x10"" LW, Meta  FARI®

37)
2:50110622 - - - SMC16:1/SM C18:1 (1) 1.02x10% LW, Meta  SNAP47
2:60455290 - - - SM C16:1/SM C18:1 (5) 630x10'” LW, Meta  TM6SF2', UPFI"
2:66008692  SMC18:1,SM C18:0 30x10°Y LW SM C16:1/SM C18:1 (10) 394x10'% LW, Meta  DHPS®
2:70649393  SM C18:0,SM C18:1 260x107% LW SM C16:1/SM C18:1 (9) 7.04x10"™ LW, Meta  CERS4%, LDLR'
2:77810469 - - - SMC16:1/SM C18:1 (5) 940% 10" LW PLPPR3'
3:40354181 - - - ADMA/total-DMA 274%10° LW UBE2F
414576462  SMC2022 207x107% Meta - - - TRIBI'
4:93440441 - - - PC ae C38:2/SM (OH) C14:1  2.07x10° D MEF2D'
4122058519 - - - PCaaC34:1/PCaaC36:1 (4) 1.09%10° D, Meta ALG14°
4:130543416  ADMA, total-DMA 255%107 LW, Meta - - - DDAHI®
5:56960624 - - - PCaa(C323/PCaaC36:1 (2) 241x10° D PTPRO', RERG'
5:66734388 Alpha-AAA, lle, Phe, kynure- 848x 107 LW, Meta - - - TSPANY', TSPANT 1"

nine*

5:87611954  His 244x107% D - - - HAL®
6:7037256 Gly 130%x10°% LW - - - GCSH®
6:8449207 Ac-Om 429%107 D, Meta - - - WWOX
6:29486603 PC aa C40:5 (other 12) 235x10%" LW, Meta  PCaa C38:4/PCaa (385 737x10% LW, Meta  LPCAT2®, SMPD3®

(459)
6:167797522 - - - SM (OH) C22:1/SM C24:0 (7) 140x 10" Meta, LW,D ELOVLI®
7:8566130 PC aa C42:5, PC aa C40:6 295%107% D, Meta PC ae C38:5/PCae C40:6;  473x10° D ELOVL2®

PC aa C38:4/PC aa C42:5
7:23110906  Cit 757%107% LW - - - MDCI'
7:45991916 PC ae C44:6, PC ae C40:1 221%107'% LW, Meta PC ae C44:5/PC ae C44:6 207x10% Meta, LW, D ELOVL5®

(18)
7:54919473 PC ae C40:1 (other 5) 331x107"7 Meta, LW PCaa C38:4/PC ae C42:2 778x10" Meta, LW  PLINT"

(26)
7:57650479 - - - PC aa C42:0/PCae C40:1 (1) 138x10° D PTPNY'
7:65570498 Pro 904x107% LW - - - EGLN3'
7:78429656 - - - PC aa C38:0/PC ae C40:1 213%10% LW PIP4P1¢, TMEMS5B°
7:86348536  LysoPCa C16:0 3.09%10% D PCae C341/PCaeC386  45x10° D CHD2', SLCO3AT"
7:89764753 - - - PC ae C34:2/PCae C36:5 (4) 523x10° Meta, LW TMEM2298"
8:96490961 LysoPC a C20:3 211x107% LW - - - MFSD8!
8111825944 - - - PC aa C32:2/SM C18:1 244x10° D ELOVLGE®, EGF'
9:482531 - - - PCae C36:1/PCae C362  229x10° D TMEMA418"
10:12447567  Kynurenine 7.88x 107 Meta, LW, D Phe/kynurenine 297x10° LW KMO*®
11:2901405 LysoPC a C16:0 1.11%x10% D - - - SPATA13"
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Table 2 (continued)

SSC:position® Single metabolite analyses Metabolite ratio analyses Candidate gene(s)"
Metabolite® Pe GWAS? Metabolite ratios® p-gainf  GWAS?

12:3934836 (O 117x10°% 1w - - - PGST®
12:6356756  PCae C40:6 (10) 409x107"° Meta, LW  PCae(C36:5/PCaeC386  201x10"° LW, Meta  FADS6®

(32)
12:16761024  PC ae C42:5 1.80x107% LW - - - ITGB3"
12:45808302  Serotonin 347x10°% LW Meta - - - SLC6A4"
12:60396907 PCaa(C384 (PCaaC344) 922x10 Meta - - - PEMT®
13:207771882  LysoPC a C20:4 195%107% Meta - - - ITGB2"
14:64397658  PC ae C44:5 257x10% LW, Meta - - - RHOBTBI"
14:96845763 - - - PC aa C32:3/PC ae C38:1 137%x10° D PCDH15"
14:108968359 - - - PC aa C32:3/PC aa C36:1 598x10° D CRTACT"
14:111732013  SM C20:2 1.89x10°% LW - - - el
14:122538710  PC aa C40:4 905x107% Meta - - - GPAME, ACSL5®
14:141410475 - - - SM (OH) C24:1/SMC160 148107 LW ECHST®

(10)
15:10146862 - - - lysoPC a C18:0/PCaaC342 170x10° D LRP1B
15:82279524  Alpha-AAA 201x107% D - - - MTX2
15:131052021 (182 499x107'® D, LW, Meta C14:1/C18:2; C16/C18:2 824x10°  Meta DNER', CAB3Y
16:47077521  C3 216x107% LW - - - FAM155A
17:5154217 - - - Arg/Thr; Lys/Thr 9.92x10° Meta SLC7AZ"
17:41835566  PCaa C42:5 339%10% D - - - LBP'
17:54676990  LysoPC a C16:1 (other 3) 713x10°% LW Meta - - - BCAST'
18:8294159  PCaa C365 321x10% D - - - AGK®
1822275108 - - - Lys/Met; Lys/Orn 1.10x10% LW AASSE

The reported results are from single metabolite and metabolite ratio analyses that pointed at some candidate genes. The complete list of all 97 mQTL and other
details are given in Additional file 1, Table S11

2 Sus scrofa chromosome (SSC) and the position of the most significant marker on Sscrofa11.1 genome version

b The names or acronyms of the most significant metabolites for the corresponding mQTL region identified by the reported tag SNP are listed. When more than one
metabolite was significant, the metabolites are listed from the most significant. If more than four metabolites have been identified for the same mQTL, the number of
significant metabolites in addition to the top one is indicated in parenthesis

€ At each mQTL, the P of association is reported for the most significant metabolite for the indicated chromosome variant position

9 Significant results obtained in the GWAS for the Large White breed (LW), Duroc breed (D) and in the meta-analysis (Meta) (listed from the most significant, when
more than one reported significant results)

€ The most significant ratios are reported. When more than two significant ratios were identified for the corresponding QTL, the number of additional ratios is reported
in parenthesis

fThe highest p-gain value (most significant results in the ratio analyses) is reported

9 Significant results obtained in the GWAS for the Large White breed (LW), Duroc breed (D) and in the meta-analysis (Meta) (listed from the GWAS that reported the
most significant results, when more than one analyses reported significant results)

P The candidate genes potentially explaining a functional effect on the identified mQTL are defined as indicated in Methods. The type of encoded protein by the
candidate genes is also indicated: r =regulatory; e =enzyme; t=transporter

processes/transformations that include the associated
metabolites, 4 encode transporters and the remaining
genes encode regulatory proteins/signaling transmit-
ters or structural elements. For the other 33 mQTL,
as no obvious candidates could be identified, novel
causal genes not yet described in other species may be
included in the highlighted genomic regions.

We can list a few examples of candidate genes for the
identified mQTL. Among the mQTL for the concentra-
tion of a few amino acids, 6 genes encode enzymes or

transporters that may directly alter the corresponding
amino acid concentration or ratio (Table 2): (i) arginase
1 (ARG1, on SSC1), which encodes the enzyme that cata-
lyzes the hydrolysis of arginine to ornithine and urea,
may explain an mQTL for the level of arginine and orni-
thine and their ratio; (ii) argininosuccinate synthase 1
(ASS1, on SSC1), which encodes the enyme that catalyzes
the formation of arginosuccinate from aspartate, citrul-
line and ATP, may explain an mQTL, for the level of cit-
rulline; (iii) histidine ammonia-lyase (HAL, on SSC5),
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Fig. 2 Joint Manhattan plots summarizing the results of the GWAS. GWAS are reported for the single metabolites and their ratios in the two breeds.
a GWAS for single metabolite levels in Large White pigs, Duroc pigs, and in meta-analysis. b GWAS for metabolite ratio levels in Large White pigs,
Duroc pigs, and in meta-analysis. Each dot represents a SNP. Suggestive and significant associations are highlighted in green. The candidate genes

at the identified mQTL are listed above the signals

which encodes the enzyme that catalyzes the first reac-
tion of the histidine catabolism, may explain an mQTL
for the level of histidine; (iv) glycine cleavage system pro-
tein H (GCSH, on SSC6), which encodes the transporter
that shuttles the methylamine group of glycine from the
P protein (GLDC) to the T protein (GCST), may explain
an mQTL for the level of glycine; (v) solute carrier family
7 member 2 (SLC7A2, on SSC17), which encodes a cati-
onic amino acid transporter responsible for the uptake
of arginine (Arg), lysine (Lys) and ornithine (Orn), may
explain an mQTL for the Arg/Threonine (Thr) and Lys/
Thr ratios; (vi) aminoadipate-semialdehyde synthase

(AASS, on SSC18), which encodes the enzyme that cata-
lyzes the first 2 steps in the lysine degradation pathway
may explain an mQTL for the Lys/Met and Lys/Orn
ratios.

The ratio between 2 acylcarnitines (butyrylcarnitine
and valerylcarnitine; C4/C5) was found to be associated
with SNPs near the isovaleryl-CoA dehydrogenase gene
(IVD, on SSC1). This gene encodes the enzyme respon-
sible for catalyzing the third step of leucine catabolism.

The mQTL identified for several biogenic amines may
involve candidate genes found in the considered genomic
window (Table 2): (i) sarcosine dehydrogenase (SARDH,
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on SSC1), associated with the level of sarcosine, encodes
a mitochondrial enzyme that catalyzes the oxidative
demethylation of sarcosine; (ii) dimethylarginine dimeth-
ylaminohydrolase 1 (DDAHI, on SSC4), associated with
the level of asymmetric dimethylarginine (ADMA),
encodes the enzyme that hydrolyzes ADMA; (iii) kynure-
nine 3-monooxygenase (KMO, on SSC10), associated
with the level of kynurenine, encodes a key enzyme in
tryptophan catabolism, which catalyzes the hydroxy-
lation of L-kynurenine to form 3-hydroxy-L-kynure-
nine; (iv) solute carrier family 6 member 4 (SLC6A4, on
SSC12), also known as 5-hydroxytryptamine (serotonin)
transporter (5-HTT), affecting the level of serotonin,
encodes an integral membrane protein that transports
this neurotransmitter from synaptic spaces into presyn-
aptic neurons.

mQTL identified for the levels of different lipid groups
(phosphatidylcholines,  lysophospatidylcholines  and
sphingomyelins) enabled the identification of several
genes that encode enzymes involved in various meta-
bolic pathways of these metabolite groups (Table 2):
(i) carboxyl ester lipase (CEL, on SSC1), which encodes
a pancreatic enzyme that catalyzes the hydrolysis of a
wide range of lipid substrates; (ii) members of the fatty
acid desaturase gene family on SSC2 (FADS1/FADS2/
FADS3) and SSC12 (FADS6), which encode desaturase
enzymes that regulate the unsaturation of fatty acids; (iii)
fatty acyl-CoA reductase 1 (FARI, on SSC2), identified
through the ratios between glycerophospholipids, which
encodes an enzyme involved in the reduction of saturated
and unsaturated fatty acyl-CoA to fatty alcohols; (iv) low
density lipoprotein receptor (LDLR), which encodes the
receptor for the major cholesterol-carrying lipoprotein
of plasma, known to be involved in sphingomyelin reg-
ulation, may explain an mQTL on SSC2, together with
the closely located ceramide synthase 4 (CERS4), which
encodes an endoplasmic reticulum membrane compo-
nent with sphingosine N-acyltransferase activity involved
in sphingolipid metabolism; (v) lysophosphatidylcholine
acyltransferase 2 (LPCAT2) and sphingomyelin phos-
phodiesterase 3 (SMPD3), both in the SSC6 region asso-
ciated with the largest number of glycerophospholipid
ratios (and ratios with sphingomyelins), which encode
an enzyme exhibiting both acyltransferase and acetyl-
transferase activities involved in phosphatidylcholine
acyl-chain remodeling and an enzyme that hydrolyzes
sphingosylphosphocholines, respectively; (vi) members
of the ELOVL fatty acid elongase gene family (ELOVLI
on SSC6, ELOVL2 and ELOVLS on two SSC7 regions and
EVOVL6 on SSC8), which encode endoplasmic retic-
ulum-bound enzymes that catalyze key reactions in the
long-chain fatty acids elongation cycle; (vii) perilipin 1
(PLIN1, on SSC7), which encode a coat protein of lipid
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storage droplets that modulates adipocyte lipid metabo-
lism; (viii) phosphatidylethanolamine N-methyltrans-
ferase (PEMT, on SSC12), which encodes the enzyme
that converts intracellular choline and phosphatidyletha-
nolamine to phosphatidylcholine in different processes;
(ix) stearoyl-CoA desaturase (SCD, on SSC14), which
encodes an enzyme involved in fatty acid biosynthesis; (x)
enoyl-CoA hydratase, short chain 1 (ECHSI, on SSC14),
which encodes an enzyme involved in the mitochondrial
fatty acid beta-oxidation pathway.

Profiling associations among metabolite groups reveals
cascade effects of candidate genes

Considering that the applied metabolomic approach can
analyze various metabolites within the same subgroups,
we then tested the hypothesis that association results
could reveal information on the cascade effects of one
locus across several related metabolites, as proposed by
Rhee et al. [54]. For example, in Fig. 3a, the P-value for
association is shown across 10 lysophosphatidylcholines
and 73 phosphatidylcholines for the leading SNP for the
mQTL with FADS6, LPCAT2/SMPD3, and PLINI as
identified candidate genes in Large White pigs. It can
be observed from this figure that these 3 mQTL may
have complementary roles in the overall profile of these
metabolites, with little overlap, suggesting that they may
influence different pathways, distinguished by the num-
ber of carbon atoms and the level of unsaturation of the
analyzed molecules.

We then used two-dimensional representations based
on metabolite ratios to disclose additional information
about the cascade effects of gene markers on multiple
metabolites (Fig. 3b—f; see Additional file 3: Figures S4—
$8). For instance, in Duroc pigs, FADS6 and PLINI,
which were not significantly associated with any metab-
olites in single metabolite analyses, were found to have
similarities with the profile ratios observed in the Large
White breed when using metabolite ratios. For both
breeds, at the FADS6 mQTL, the top ratios included the
phosphatidylcholines PC ae C36:4 and PC ae C38 with
4 to 6 double bonds, and PC ae C38, with 4 to 6 double
bonds. At the PLINI mQTL, the top ratios were for PC
ae C38:0, PC ae C40:1 and PC ae C42, with one to three
double bonds. These two-dimensional pictures based on
metabolite ratios confirmed the results of the meta-anal-
yses, supporting the fact that the same two mQTL seg-
regate in both breeds, although signals did not reach the
significance threshold in Duroc breed, likely due to the
lower power of the GWAS for this breed. For the mQTL
identified in Duroc pigs in the correspondence of the
FADSI1/FADS2/FADS3 genes, and in Large White pigs
in the region of the FARI and LPCAT2/SMPD3 genes
(all confirmed in meta-analyses), the two-dimensional



Bovo et al. Genetics Selection Evolution (2025) 57:11 Page 14 of 27
a
25
——FADS6 ——LPCAT2/SMPD3 PLIN1
20
o
=3
© 15
3
2
o 10
o
;
0 e e APl AN oL B Lo Do oo B 22 A Y T > ¥" - B\
99?1‘.3.9?1'?!'!'!?Z‘?_9?!‘.3.'.‘!9'.‘1'.‘!f.'!'.‘!'.“.E'!?'.QT!'H'F!‘.‘1‘!!‘99‘:!'!!‘.‘1‘.’!‘9?!'?!'!!‘.{‘.’!‘90"*"‘“‘“‘90""“0ﬁN'ﬂO"‘N"’“""C"‘N"’“""‘D"‘N"’“mmoﬁ""_’!?’.‘.’!i’!?’.‘.’!”
SR bbb b bk i hipafoful: 2903583393558 3%9928333308%933035258% 3323858539323 59¢32¢
S0CU30cs80008080803 3380888838883 88835853888383000000000000000000005305055538883833
eSS C 383333333333 33 3383333333883 333a32323 33323828 LLILRLILILLLRRS
PR e e S 88 88888888 8888888888 8888888888883 88388388388388388383888888588888888
233333 31124121112 1 it it i A A R R R R E Y
2222228838¢8
\ LysoPhosphatidylcholine Phosphatidylcholine diacyl Phosphatidylcholine acyl-alkyl /
s N N [ e N N
b FADS6* C PLINI* D FADs1/FADs2/FADS3 E FAR1* F  tpcAT2/smPD3*

)

FADS1/FADS2/FADS3*
Duroc

Large White

LPCAT2/SMPD3
Duroc

D
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pictures based on the metabolite ratios suggest that the
identified mQTL may have different cascade effects in the
two breeds. In Large White pigs, this ratio-based analy-
sis identified clear effects of FARI on PC ae C34:1, PC ae
C36:3, and PC ae C38:5, which did not emerge in the sin-
gle metabolite analysis. These findings further comple-
ment the effects on the glycerophospholipid family that
have already been shown for FADS6, LPCAT2/SMPD3,
and PLIN1I using the single-marker analyses (Fig. 3a).

GWAS results provide comparative pig-human insights

We compared the GWAS results we obtained in pigs with
the results reported for the same metabolites in humans
[7, 9-11, 55-59]. A summary of this comparison is pre-
sented in Additional file 4: Text S3. Out of the 64 mQTL
for which we identified candidate genes, 41 included
genes that were associated with the same metabolites

or with metabolites of the same family in both pigs and
humans. This provides indirect inter-species confir-
mation of our results and those previously identified in
humans [see Additional file 1: Tables S11 and S12]. This
can be also used to further support the candidacy of the
reported genes which, in turn, may reveal some potential
novel putative functions of the corresponding genes that
have not yet been well defined. An example is the mQTL
on SSC1 for isoleucine concentration, for which the sol-
ute carrier family 2 member 12 gene (SLC2A12) was
identified as candidate gene. This gene encodes glucose
transporter 12 (GLUT12), which acts as a sugar and urate
transporter, suggesting that isoleucine could be a marker
for the role of this transporter protein [60], as GWAS
in humans have also reported that variability in this
gene may affect blood isoleucine level [see Additional
file 1: Tables S11, S12]. Another example comes from
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the mQTL on SSC1, which encompasses the vasoactive
intestinal peptide gene (VIP), which is associated with
phosphatidylcholine concentrations. Variability in the
same gene in humans has been shown to be associated
with the level of phosphatidylcholines [see Additional
file 1: Table S11, S12]. VIP function has been shown to
promote the synthesis of pulmonary surfactant phospho-
lipids, which might be linked to the cascade pathways
that regulate the production of the associated phosphati-
dylcholines [61, 62].

We also combined the GWAS results we obtained in
pigs with other sources of information, which sheds new
light on the putative function of several other genes. One
example comes from the major facilitator superfamily
domain containing 8 (MFSD8) gene located in a region
on SSC8 that is associated with the level of a lysophos-
phatidylcholine. In humans, a form of the neuronal
ceroid lipofuscinosis (neuronal ceroid lipofuscinosis 7,
CLN?7) is associated with pathogenic variants in MFSDS,
which encodes an MFS transporter that moves small sol-
utes (yet to be identified) across membranes [63, 64]. The
major facilitator superfamily domain-containing protein
2A gene (MFSD2A), a close paralog of MFSDS, is known
to be a component of the blood—brain barrier that trans-
ports lysophosphatidylcholines into the central nerv-
ous system [65]. Adding our results to the information
derived from these other studies suggests that MFSD8
may use lysophosphatidylcholines as substrates that are
actively transported from the blood to the brain. This
hypothesis could potentially be useful in explaining the
molecular mechanisms underlying CLN7 disease.

Multiple GWAS in humans have confirmed associa-
tions between metabolites and genes that we also report
here for pigs. In most cases, these genes are well charac-
terized, with well-established direct relationships to the
associated metabolites (such as ARGI, IVD, SARDH,
FADS1/FADS2/FADS3, CERS4, DDAHI, HAL, GCSH,
ELOVL2, KMO, and SLC7A2), as previously described.
However, in the case of the tribbles pseudokinase 1
gene (TRIBI), which we identified to be associated with
sphingomyelins, and of the transmembrane protein 229B
gene (TMEM229B), associated with phosphatidylcholine
ratios in our results, the connections may be indirect,
involving different regulatory pathways.

Several strong candidate genes with roles that have
been already clearly defined have not been associated
with the same metabolites in humans as we report here
for pigs [Additional file 1: Table S11]. This list includes,
several genes involved in the glycerophospholipid biosyn-
thesis and fatty acid metabolism super-pathways: FARI,
associated in pigs with several phosphatidylcholine
ratios; LPCAT2 and SMPD3, included in the SSC6 mQTL
with the largest number of glycerophospholipid ratios;
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ELOVLI1, ELOVL5, and ELOVL6 which are associated
in pigs with sphingomyelins or phosphatidylcholines;
FADS6, associated in pigs with phosphatidylcholines
and various glycerophospholipid ratios; SCD, associated
in pigs with sphingomyelins, whereas in humans it was
associated with other lipids produced within the com-
mon glycerophospholipid biosynthesis super-pathway,
i.e. phosphatidylcholines and lysophosphatidylcholines;
and ECHS], associated in pigs with sphingomyelins. Fur-
thermore, variability in the SLC6A4 gene region, which
we identified to be associated with plasma serotonin lev-
els in pigs, has not demonstrated the same association
with this biogenic amine in any human biofluids, to the
best of our knowledge.

Identification of candidate causative mutations in pigs
based on whole genome resequencing

We conducted whole genome resequencing for 88 Large
White and 35 Duroc pigs from the same metabolized pig
populations, as well as for additional 35 Landrace pigs for
comparative analyses. Among the 1,420,757 variants [see
Additional file 2, Table S13; Additional file 4: Text S4] we
identified in the 97 mQTL regions, and considering those
variants that alter the protein coding sequence [see Addi-
tional file 1: Table S14], only few of these potentially dis-
rupting mutations had a moderate to high breed specific
linkage disequilibrium (LD; r*>0.5) with the lead SNP
for the corresponding mQTL. Therefore, only variants in
6 genes (missense mutations in ARGI, GFI1B, PTPRO,
MDCI1, and FADS6, and one in-frame insertion in KMO)
can be considered compatible with a putative causative
role for the identified mQTL based on their estimated
minor allele frequency, LD level, and potential functional
effects on the encoded protein (Table 3).

Focusing on the sequence structure of the KMO gene,
the in-frame insertion that segregates in the three cos-
mopolitan breeds sequenced in this study (Large White,
Duroc, and Landrace) had an LD value of 1.00 with the
most significant SSC10 SNP for the level of kynurenine
and with 2 other KMO missense mutations that were pre-
sent in all three breeds [see Additional file 2: Table S15].
These findings indicate that two major haplotypes
(named rs81278711-A and rs81278711-G, according to
the tag SNP associated with the level of kynurenine in
the GWAS) are present at the KMO in these three breeds.
These KMO haplotypes have opposite frequencies in the
Large White and Duroc breeds [see Additional file 2:
Tables S15 and S16].

We also report the frequencies of KMO nonsynony-
mous mutations in 22 different pig breeds (including the
3 cosmopolitan breeds: Large White, Duroc and Lan-
drace; and 19 autochthonous breeds from 9 European
countries) and in European wild boars [see Additional
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file 2: Table S16]. The most frequent haplotype presents
in the Large White breed (rs81278711-A) may be con-
sidered the wild-type form, as it was fixed in European
wild boars. This form was the most frequent in most local
breeds, except for the Mora Romagnola breed, which
experienced introgression from Duroc pigs in the past
[45].

A case study: KMO haplotypes affect metabolites

of the kynurenine pathway based on a nutrigenetic study
The kynurenine (KYN) pathway (KP) is an alternate tryp-
tophan (Trp) catabolic pathway that, under physiological
conditions, accounts for ~95% of the overall breakdown
of this essential amino acid, resulting in the downstream
production of KYN and other immunoregulatory and
neuroactive metabolites, including the important redox
cofactor nicotinamide adenine dinucleotide (NAD) [66].
In this pathway, Trp is converted into KYN, which is then
metabolized through three routes. One of these routes
involves conversion of KYN into 3-hydroxykynure-
nine (HK) by the enzyme kynurenine 3-monoxygenase
(KMO). This conversion leads to the production of qui-
nolinic acid (QUIN), which is further transformed into
NAD. A simplified representation of the KP is shown in
Fig. 4a.

After identifying KMO as the candidate gene affecting
the level of KYN in pig plasma (Fig. 4b), we conducted
a longitudinal nutrigenetic study to examine the impact
of the two specific KMO haplotypes on KYN and several
other metabolites of the same pathways. We used the
targeted Bevital platform (see Additional file 2: Table S4;
the Biocrates platform did not include all these metabo-
lites) [49] to measure all major KP intermediate metabo-
lites in the plasma of two groups of eight weaned Large
White X Landrace piglets. Each group was homozygous
for one of the two KMO haplotypes (rs81278711-A
and rs81278711-G), which correspond to two different
KMO deduced protein forms, as determined by a few
single amino acid polymorphisms [see Additional file 2:
Table S15].

All animals were subsequently fed with standard diet
and then with a double diet supplementation of Trp to
potentially boost the putative effects of the 2 KMO haplo-
types on the KP components in relation to the basal state.
At both basal and Trp supplementation time points, the
piglets of the two groups had different plasma KYN con-
centrations, in the same direction as expected based on
the GWAS results, with the rs81278711-AA genotype
having a higher KYN level than the rs81278711-GG gen-
otype (Fig. 4b, c).

The Trp load in the piglets’ diet magnified the differ-
ence in KYN concentration between the animals carry-
ing the two opposite genotypes (P=6.22x 107, with a
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large increase of KYN in the rs81278711-GG piglets. The
same effect was also evident on the levels of kynurenic
acid (KA) and anthranilic acid (AA) (Fig. 4d, e; see Addi-
tional file 2: Table S4), which defines the two alternative
routes of transformation of KYN that are not catalyzed
by KMO. The level of 3-hydroxykynurenine (HK), whose
production from KYN is catalyzed by KMO, did not dif-
fer between the piglets with different genotypes. The
same was true for all other metabolites [see Additional
file 2: Table S4; Additional file 3: Figures S9 and S10].
Given these results, using a steady-state kinetic model,
we tested whether the most parsimonious explanation for
the differences in the levels of the considered metabolites
in the two groups of piglets based on their different KMO
haplotypes could be attributed to differences in the reac-
tion rate (velocity) of the KMO enzyme (vyyo). Specifi-
cally, the model assessed whether an increase of vy in
the KMO®81278711-GG g could result in the observed
differences in KYN levels (as well as KA and AA) [see
Additional file 2: Tables S4 and S6; Additional file 3:
Figures S9-S11] due to an increased production rate of
HK. This modeling indicated that the observed differ-
ences could be due to differences in one of the following
parameters: the affinity for the substrate (K),), the turn-
over number (k_,), or the total amount of enzyme ([E]).
We then analyzed KMO gene expression and protein lev-
els in the liver (the main tissue involved in the KP) of pigs
with the two KMO genotypes, using JPCR and Western
blotting. No differences were observed in both analyses
between the two groups of pigs [see Additional file 3: Fig-
ure S12], ruling out the possibility that the estimated dif-
ference in vy o could be attributed to differences in [E].
In silico modeling and investigation of the KMO protein
structure revealed three variations that characterize the
two haplotypes (S95F, Q135R, and V178L), all three in
the FAD-binding domain (Fig. 4f; Additional file 3: Figure
S13; Additional file 4: Text S5). Therefore, considering all
these results, it is reasonable to suggest that the differ-
ences in the two KMO protein forms, as defined by the
2 haplotypes, can alter metabolite affinity to the encoded
enzyme or affect the cofactor binding and, therefore, the
enzyme kinetics.

Gaussian graphical models can reconstruct metabolic
pathways in pigs

Following the reasoning that metabolomic data can be
used to deduce biochemical information, we went back
to the 164 metabolites from the 6 analyte classes that
were measured using the Biocrates approach in all Large
White and Duroc pigs. Our goal was to identify correla-
tions between metabolites and construct a pig-specific
Gaussian Graphical Model (GGM). In GGM, edges rep-
resent correlations between two variables conditional on
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Fig. 4 Information on the kynurenine pathway and KMO. a Simplified representation of the kynurenine pathway. Metabolites are shown

in boxes and reaction directions are shown by arrows labelled with enzyme acronyms. The red symbols“V“*"and “="indicate the decrease,
increase, and equal metabolite concentration in piglets homozygous for the KMO rs81278711-G or the rs81278711-A alleles, as observed

in the longitudinal nutrigenetic study (the SNP refers to that associated with kynurenine level in the GWAS; these two alleles indicate the two
major KMO haplotypes). Abbreviations for the metabolites: Trp, tryptophan; KYN, kynurenine; XA, xanthurenic acid; AA, anthranilic acid; KA,
kynurenic acid; HK, 3-hydroxykynurenine; HAA, 3-hydroxyanthranilic acid; QUIN, quinolinic acid. Abbreviations for the enzymes: TDO, tryptophan
2,3-dioxygenase; KYNU1, kynureninase; KYNU2, kynureninase; KMO, kynurenine 3-monoxygenase; KAT1, kynurenine aminotransferase; KAT2,
kynurenine aminotransferase; 3HAO, 3-hydroxyanthranilate 3,4-dioxygenase. b, ¢ Plasma kynurenine (KYN) concentration in Large White and Duroc
pigs included in the GWAS and in the Large White x Landrace piglets homozygous for the alternative KMO alleles. d, e Plasma anthranilic acid

(AA) and kynurenic acid (KA) concentrations in the piglets homozygous for the alternative KMO haplotypes. f Model of the pig KMO protein

as retrieved from the SwissModel repository and based on rat KMO (PDB: 6LKD). Chains A and B of the functional dimeric structure are shown

in cartoons and ribbons representations, respectively. The FAD-binding domain detected by the PFAM entry PF01494 is depicted in cyan. Positions
corresponding to the differences in the two KMO haplotypes are represented in spacefill and coloured in red. Variations (S95F, Q135R, and V178L)
occurring in the FAD-binding domain are evidenced
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all other variables (i.e., all metabolites not included in the
pair) to calculate Partial Correlation Coefficients (PCC)
[67]. High PCC values between metabolite pairs typically
indicate closely related metabolites that are separated
by one or a few enzymatic steps (pathway distance=1,
2, 3...). This allows for the reconstruction of known (as
proof-of-concept) or unknown (discovery) steps and bio-
logical connections in metabolic pathways, including co-
regulations [29, 42]. The GGM consisted of a total of 159
nodes: 88 metabolites connected by 73 edges (PCC>0.3)
and 71 singletons (Fig. 5a). Integrating GWAS informa-
tion into the GGM did not significantly alter the metab-
olite networks obtained (Fig. 5b; see Additional file 2:
Table S17; Additional file 3: Figure S14; Additional file 4:
Text S6). Several examples on the inclusion of the effect
of specific mQTL genotypes in estimation of metabolite
correlations are shown in Additional file 3: Figures S15
and S16.

The 73 significant PCC of the GGM obtained with
all pigs are reported in Table 4 and Additional file 1:
Table S18, along with comparative information from
similar human metabolomic datasets retrieved from
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previous studies [55, 56, 67]. The proposed metabolic
pathway explanations are also included. As expected,
metabolites of the same family tended to be more inter-
connected with each other than with metabolites of other
classes, as also observed in previous studies [55, 56, 67].
Only 3 of the 73 significant PCC included metabolites
from different families [see Additional file 1: Table S18].
Several detailed examples of partial networks that
include closely related metabolites of the same classes are
reported in Additional file 3, Figures S16 and S17 and are
illustrated in Additional file 4: Text S7.

The top four PCC values were for metabolite pairs
(sphingomyelins, lysophosphatidylcholines or phosphati-
dylcholines) that are separated by just one enzymatic
step of desaturation or elongation. The 5th ranked PCC
involves metabolites that belong to two subgroups of
the glycerophospholipid class (PC aa C38:3and lysoPC a
C20:3; PCC=0.669) and that differ by a C18:0 fatty acid
residue, probably linked by still-uncharacterized step(s)
of the Lands cycle. All of these top ranked metabolite
pairs have also been reported to have high PCC values in
humans [55, 56, 67].
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Fig. 5 Gaussian Graphical Model (GGM) obtained using metabolomic information in pigs. a Network presentation of Partial Correlation Coefficients
(PCC)>0.3 (88 metabolites connected by 73 edges) in the Large White and Duroc populations. Singletons (n=71) are not shown. Each node
represents a metabolite, and the line width of edges indicates the PCC strength. Node labels are given in Additional file 1: Table S1. b Comparison
between PCC in Large White pigs when excluding and including the genetic effects defined by the identified mQTL
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Table 4 Top 30 Gaussian Graphical Model (GGM) edge weights
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Rank?® Metabolite 1 Metabolite 2 Pig PCC Human PCCP mQTL® Metabolic pathways/reactions
1 SM C18:0 SM C18:1 0.784 0.767* 19-23 One desaturation
2 lysoPCa C16:0 lysoPCa C18:0 0.722 0.731" 51,64 One elongation
3 SMC16:1 SMC18:1 0.689 0.765" 19-23 One elongation
4 PC aa C38:6 PC aa C40:6 0.678 0.709" 41,67 One elongation
5 PCaaC383 lysoPCa C20:3 0.669 0.5-07* 41 Lands cycle
6 lle Leu 0.664 0.506° 2,34 Branched-chain amino acids
7 Histamine Serotonin 0.634 - 69 Co-regulation
8 c10 8 0627 0.735" 55 B-oxidation step—@3-oxidation intermediate
9 lysoPCa C18:2 lysoPC a C20:4 0.622 - 74 One elongation and two desaturations
10 PC ae C40:1 PCae C422 0.599 - 46,47 One elongation and one desaturation
11 C41 H1 0.589 - - B-oxidation and energy homeostasis
12 SM (OH) C22:1 SM (OH) C22:2 0.589 >0.7¢ - Sphingolipid-specific desaturation
13 PC aa C40:4 PC aa C40:5 0.573 0.5-0.7* 16, 82 One desaturation
14 C10:1 C12:1 0.569 0.3-0.5* - B-oxidation intermediates
15 PCae C36:1 PCae C362 0.538 - 38,59 Desaturation
16 ADMA Total-DMA 0.533 - 32,56 Arginine N-methyltransferases
(PRMTs) — tota. DMA=ADMA + SDMA
17 SM C16:.0 SMC16:1 0.524 0.5-0.7* - Sphingolipid-specific desaturation
18 lysoPCa C18:1 lysoPCa C18:2 0.507 0.5-0.7* - One desaturation
19 PCaa C36:2 lysoPCa C18:0 0481 03-05* - Lands cycle
20 PCae C364 PCae C38:5 0469 - 52 One desaturation
21 PCaa C384 lysoPC a C20:4 0467 0.3-0.5* 70,74 Lands cycle
22 SM C24:0 SM (OH) C24:1 0.455 - - One hydroxylation and one desaturation
23 PCaa C34:2 PCaa C34:3 0449 - - One desaturation
24 PC aa C36:4 PC aa C36:5 0.444 - 15,95 One desaturation
25 PCae C342 PCae C363 0443 - 18 One elongation and one desaturation
26 SM C24:0 SM C24:1 0.440 0.577" - Sphingolipid-specific desaturation
27 PCaa C36:3 lysoPCa C18:1 0.440 - - Lands cycle
28 PCaa (342 PC aa C36:4 0.406 - - One elongation and two desaturations
29 Lys Orn 0.405 - 3,4,65,75,96 Biosynthesis of amino acids
30 PCae C384 PC ae C40:4 0.400 03-05% 41 One elongation

The reported results are ranked based on the Partial Correlation Coefficient (PCC) obtained from the metabolomic profiles of the investigated Large White and
Duroc pigs. The table also includes PCC information reported in previous studies in humans for the same metabolite pairs, the linked mQTL identified in pigs and the
proposed metabolic pathway explanations

2The complete list of significant PCC is reported in Additional file 1: Table S18

b PCC reported for the same pair of metabolites in humans
©mQTL number correspondence is reported in Additional file 1: Table S11

* Information from Krumsiek et al. [67]

§ information from Mittelstrass et al. [55]

¥ Information from Krumsiek et al. [56]

One of the highest PCC values was obtained for the

pair histamine-serotonin (PCC=0.63). Histamine is a
biogenic amine, with a variety of important functions,
and is mainly synthesized in basophils and mast cells.
Serotonin (also known as 5-hydroxytryptamine or 5-HT)
is another biogenic amine and a well-known neuro-
transmitter. Biochemically, histamine and serotonin are
not directly linked, so another explanation for this high
PCC value should be considered. Histamine can inhibit

serotonin release in some neural tissues via histamine H3
receptors (H;Rs) [68, 69]. Recently, the relation between
these two metabolites has been suggested to be due to a
novel mechanism that regulates activity of the serotonin
transporter (SERT, also known as SERT1 or SLC6A4)
by the H;R-mediated CaMKII/calcineurin pathway that
controls reuptake and clearance of released serotonin in
the central nervous system [70]. It remains to be evalu-
ated whether these regulatory steps can explain the high
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PCC value observed in pigs. SLC6A4 is also the candidate
gene associated with the level of serotonin reported here
for the GWAS for Large White pigs (Table 2).

Another interesting result included, again, seroto-
nin, which had a significant PCC value with taurine
(PCC=0.306) [see Additional file 1: Table S18]. Taurine,
one of the most abundant free amino acids in vertebrates,
plays various important physiological roles, including in
development and neuronal activity. This significant PCC
value observed in pigs may be due to an indirect mecha-
nism that involves regulation of the serotonin receptor
and its release, as suggested by preliminary results from
a zebrafish model, in which taurine-mediated aggression
is abolished via serotonin receptor antagonism [71]. The
indirect relationships between these three metabolites
(serotonin, taurine, and histamine), as identified through
the PCC of the latter two with serotonin, could be attrib-
uted to some not yet defined feedback regulation systems
that involve these three metabolites. It is worth noting
that in Large White pigs, the lead SNP near SLC6A4 for
the mQTL for serotonin was also suggestively associated
with taurine, further suggesting a potential indirect bio-
logical connection between these metabolites (Tables 2
and 4; see Additional file 3: Figure S19).

Discussion

Our study represents the largest investigation that has
merged metabolomics and genomics in pigs to date. By
combining information from heritability estimation and
GWAS, we report that many basic components of pig
metabolism, defined in this study as plasma metabolites
from various biochemical classes, are influenced, at least
in part, by genetic factors that contribute to modifying
their circulating concentration and can, therefore, be
indicated as genetically influenced metabolites or GIM.
These genetic factors may have cascade effects on sev-
eral pathways or metabolic steps. This aligns with results
reported in humans [7, 9-11, 55-59]. In this context,
adding data from another mammalian species, such as
the pig, provides comparative information that contrib-
utes to uncover the complexity of the mammalian metab-
olomic landscape. This can lead to the development of
new concepts and hypotheses that support the role of
various metabolites in fundamental biological processes,
which may also be valuable in explaining their signifi-
cance in human diseases.

Based on our results, we conducted a human-pig
comparative analysis of the estimated heritability of
various metabolite classes. This analysis utilized infor-
mation from the review study on humans by Hagenbeek
et al. [8], which included studies based on the same tar-
geted metabolomic approach that we employed in pigs.
Despite methodological differences in the collection
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and analysis of data and in the number of individuals
investigated, several key points are worth discussing.
The levels of essential amino acids had lower heritabil-
ity estimates than the levels of nonessential amino acids
in both humans and pigs, although this difference was
not significant in either species. It has been suggested
that essential amino acids, which cannot be synthesized
directly by the organism, may generally have lower her-
itability than nonessential amino acids, because the
latter can be influenced directly by the metabolism of
the organism [72]. However, this hypothesis requires
further support from additional studies. From the
human-pig comparative analysis that related herit-
ability estimates with the complexity of the chemical
structure of the metabolites [see Additional file 4: Text
S2], it became evident that a more detailed examina-
tion of various groups of biomolecules is necessary to
draw any conclusions. This analysis should consider
the number of biochemical steps needed to metabolize
these molecules, as well as the major mQTL that have
been identified in both species.

Summarizing the results obtained from the two diver-
gent Western pig breeds analyzed here (Large White
and Duroc), we identified genome-wide associations for
a total of 126 metabolites from 5 analyte classes. These
results pointed to a total of 97 mQTL regions, distributed
across all porcine autosomes. It is also worth mention-
ing that the high level of LD presents in pig populations
[34, 35] can make it difficult to evaluate if the associa-
tions are due to one or more loci, especially for the most
extended regions. Further studies would be needed to
analyze some of the mQTL regions. Of the 97 mQTL
regions identified in this study, 29 were only found in
Large White pigs, and 33 were only found in Duroc pigs.
The remaining mQTL were discovered in both breeds
(n=5), in one breed or the other and in meta-analyses
(15 and 5, respectively, also identified in either the Large
White or the Duroc breed), or solely in meta-analyses
(n=10). Some of the mQTL that emerged from meta-
analyses showed clear segregation in the two breeds
when breed-specific two-dimensional pictures based on
metabolite ratios were included. Other mQTL that were
identified with meta-analyses could result from the com-
bination of different breed-specific effects of the same or
closely linked loci, as the two-dimensional analyses pro-
duced from the metabolite showed different patterns in
the two breeds, in particular for mQTL for which more
than one candidate gene was highlighted (i.e. Fig. 4c—e).
We therefore demonstrated for the first time in this study
that ratio-based analyses can be useful in extracting addi-
tional information for interpreting and defining the role
of certain mQTL, and can contribute to establishing cor-
respondence between different populations.
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Summarizing these results, we can clearly state that
the mQTL patterns in Large White and Duroc breeds
are largely different. When the mQTL segregate in both
breeds, allele frequencies of the lead SNP are usually
opposite in the two breeds [see Additional file 1: Tables
S9; Additional file 2: Table S15], further supporting vari-
ous metabolic differences between Large White and
Duroc pigs. In many pig production systems, these two
breeds are utilized to form lines that are then crossed to
exploit heterosis, which can be the result of, at least in
part, the combination of different genetic factors that are
involved in basic metabolic processes. It was interest-
ing to note that the number of breed specific mQTL was
similar for the two breeds, despite the different number
of animals investigated in the Large White and Duroc
breeds. In Duroc pigs, the use of metabolite ratios was
very effective in revealing novel (and independent) breed
specific mQTL that did not emerge in the single metab-
olite analysis (15 out of 33 mQTL were Duroc specific).
Although the number of significant metabolite ratios was
largest for Large White pigs (mainly involving phosphati-
dylcholines), most of them identified the same few major
mQTL already identified in single metabolite GWAS. The
utility of metabolite ratios has already been demonstrated
in human GWAS to reveal several mQTL that could not
be identified by using single metabolite information [7,
53, 73]. This suggests that ratios can contribute to iden-
tifying genetic determinants that affect specific reaction
steps or groups of metabolites within the same metabolic
pathways or that may be co-regulated.

For 66% of the 97 mQTL regions, one or more potential
effector genes could be identified. Many of these genes
can be considered obvious candidates based on already
well-established information, due to their direct involve-
ment in the metabolic steps and biological mechanisms
that include the corresponding metabolites. The iden-
tification of strong candidate genes was also possible
within the Duroc breed, in which GWAS were based on
a relatively low number of pigs. This suggests that the
use of molecular phenotypes (i.e. the metabotypes) that
are closely linked to genetic variation is able to provide a
snapshot of the genetic determinants that affect metabo-
lism in relatively small experimental designs.

We then obtained comparative human-pig information
for the identified mQTL, providing inter-species confir-
mation of candidate genes and opening new windows
on the biological roles of the encoded enzymes or trans-
porters. For example, considering the findings in pigs,
it would be intriguing to investigate further if altered
lysophosphatidylcholine accumulation [63, 64] could be
the molecular mechanism that links MFSD8 variants to
the predisposition to neuronal ceroid lipofuscinoses in
humans.
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When we attempted to assess whether causative muta-
tions of the identified mQTL would be determined by
variants that affect the encoded protein structures based
on concordant evidence, including the predicted effects
of the variants, segregation in the breed where the mQTL
was identified, and LD with the lead SNP, we could only
assert this in a very few cases. Therefore, we can hypoth-
esize that most of the mQTL are better explained by
regulatory variants that may alter the expression of the
identified genes, which aligns with what has already
been suggested in humans [53]. Therefore, complement-
ing genotype-tissue expression datasets in pigs [74] with
metabolomic data can provide additional information to
elucidate the biological diversity in this livestock species,
ultimately leading to a better understanding of basic bio-
logical processes.

We then further investigated one mQTL, due to its rel-
evance in affecting a key component of the kynurenine
pathway, which is linked to tryptophan catabolism, an
essential amino acid that is a limiting factor in pig nutri-
tion. Alth