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Abstract

Heat stress is one of the main welfare and productivity problems faced by dairy cattle
in Mediterranean climates. The main objective of this work is to predict heat stress in
livestock from shade-seeking behavior captured by computer vision, combined with some
climatic features, in a completely non-invasive way. To this end, we evaluate two soft
computing algorithms—Random Forests and Neural Networks—clarifying the trade-off
between accuracy and interpretability for real-world farm deployment. Data were gathered
at a commercial dairy farm in Titaguas (Valencia, Spain) using overhead cameras that
counted cows in the shade every 5–10 min during summer 2023. Each record contains the
shaded-cow count, ambient temperature, relative humidity, and an exact timestamp. From
here, three thermal indices were derived: the current THI, the previous-night mean THI,
and the day-time accumulated THI. The resulting dataset covers 75 days and 6907 day-
time observations. To evaluate the models’ performance a 5-fold cross-validation is also
used. The results show that both soft computing models outperform a single Decision Tree
baseline. The best Neural Network (3 hidden layers, 16 neurons each, learning rate = 10−3)
reaches an average RMSE of 14.78, while a Random Forest (10 trees, depth = 5) achieves
14.97 and offers the best interpretability. Daily error distributions reveal a median RMSE of
13.84 and confirm that predictions deviate less than one hour from observed shade-seeking
peaks. Although the dataset came from a single farm, the results generalized well within
the observed range. However, the models could not accurately predict the exact number
of cows in the shade. This suggests the influence of other variables not included in the
analysis (such as solar radiation or wind data), which opens the door for future research.

Keywords: mathematical modeling; machine learning; soft computing; Random Forests;
neural networks; heat stress in livestock; precision livestock farming

MSC: 37M05; 68T05; 92B20; 62H30; 62M10; 92D50

1. Introduction
In the context of livestock productivity, mathematical modeling allows for understand-

ing and quantifying the complex interaction of environmental variables and physiological
responses. Taking advantage of well-established principles of mathematical analysis and
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modeling, this work aims to establish a robust mathematical framework that captures the
dynamics of Temperature–Humidity Indices and their relationship to animal welfare. This
framework not only facilitates a deeper theoretical understanding but also provides the
necessary structure to integrate machine learning methodologies. Through this combina-
tion, we aim to improve predictive capacity and practical knowledge to improve livestock
management in different climatic conditions.

Artificial Intelligence (AI) is a field of Computer Science that focuses on creating
systems capable of performing tasks that normally require human intelligence. These
systems include a wide range of tasks ranging from learning, perception, or reasoning to
problem solving, image recognition, or decision-making. Moreover, machine learning (ML)
techniques—supervised, unsupervised, and reinforcement—are now standard tools across
science and engineering (such as, for instance, in the Economy [1] or Sport Sciences [2]
but also in the case of the livestock sector [3,4]). In this sense, soft computing is the col-
lective term coined by Zadeh (1994) for computational paradigms—fuzzy logic, Neural
Networks, evolutionary algorithms, and their hybrids—that trade exactness for robustness
and tolerance to uncertainty. Unlike “hard computing” methods based on exact logic, soft
computing approaches are designed to handle noisy, incomplete, or vaguely defined data
while delivering solutions that are “good enough” for complex real-world problems [5].
Biological processes rarely unfold in the orderly, deterministic manner that traditional
computational methods assume but are conditioned by stochastic fluctuations in the envi-
ronment, sensor noise, and the intrinsic heterogeneity of living organisms. The behavior
of dairy cattle is a clear example: even under identical thermal loads, individual cows
respond differently, and camera-based counts of shade-seeking animals are unavoidably
imprecise. Because soft computing was explicitly conceived to “compute with words,
perceptions, and uncertain data”, it offers a natural fit for this problem domain. Techniques
such as Random Forests and Neural Networks tolerate incomplete or noisy inputs, capture
nonlinear interactions without requiring a fully specified physiological model, and produce
approximate—but operationally useful—outputs that can drive real-time management de-
cisions. By leveraging this tolerance to imprecision, soft computing models provide robust,
low-cost tools for precision livestock farming, where the objective is not perfect prediction
of every individual but reliable, adaptive guidance under biologically variable conditions.

While ML techniques are widely applied in livestock farming, most studies focus on
milk production [6], disease prediction [7], or feed optimization [3]. More specifically,
behaviour-focused machine learning work on cattle heat stress has so far targeted proxies
other than shade seeking. Chapman et al. [8] forecasted the proportion of animals with
panting scores ≥ 1 using a deep-learning model driven by micro-climate data; Tsai et al. [9]
linked drinking-bout frequency, detected with an embedded CNN imaging system, to heat-
load indices; Woodward et al. [10] predicted heat stress events from rumen-temperature
boluses via a Cubist model. However, no existing approach simultaneously (i) quantifies
shade-seeking counts from computer-vision data, (ii) enriches the raw THI with cumulative
and night-time indices, and (iii) outputs interpretable, low-latency commands suitable for
real-time barn automation-gaps that the present study addresses. Also, few efforts have
targeted behavioral responses to environmental stress, such as shade-seeking, despite its
critical importance for mitigating heat stress in animals. This paper addresses this gap
by developing predictive models adapted for livestock management in Mediterranean
regions, which are particularly vulnerable to heat stress. In our case, we will use three
well-known algorithms of supervised learning: Random Forest (as a generalization of a
Decision Tree, which will be the first) and Neural Networks. Random Forest has a range of
applications in livestock farming, such as, for instance, the prediction of milk production [6],
disease detection [7], meat quality classification [11], feed optimization [3], fertility and
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reproduction prediction [12], or environmental health management [13]. Neural Networks
have also been widely used in similar contexts (see, for instance, [14–16]). Details of these
three soft computing algorithms can be found in Section 2.

In this context, a relevant difference between these two types of algorithms (Random
Forest and Neural Networks) lies in the concepts of explainability and interpretability.
Explainability and interpretability are key concepts when it comes to understanding and
trusting models. On the one hand explainability refers to the ability of the model to provide
understandable explanations of its behavior and results. In other words, explainability
focuses on providing details and reasons about how and why a prediction was produced.
On the other hand, interpretability refers to the ease with which a human being can under-
stand the reasons behind a model’s predictions. Figure 1 positions the three algorithms
studied—Decision Tree, Random Forest, and Neural Network—along the interpretability–
explainability spectrum. Information about interpretability and explainability can be found
in [17].

Explainability

Interpretability

Linear Regression

Decision Tree

Logistic Regression

Random Forests

Neural Networks

Gradient Boosting

SVM

KNN

Naive Bayes

Figure 1. Relationship between interpretability and explainability of several supervised ML algo-
rithms. The algorithms highlighted in blue are the ones utilized in this study.

We end this first section by talking about the main feature of our dataset (which will
be explained at the beginning of the second section): the Temperature–Humidity Index
(THI). Mitigating climate change impacts on dairy cattle production systems is essential for
the sector’s sustainability, especially as rising temperatures increase the risk of heat stress
and negatively impact animal welfare and productivity, particularly in Mediterranean
regions. In response, AI integrated with precision livestock farming (PLF) technologies
enables detailed analysis of individual data, supporting the adoption and assessment of
targeted strategies to reduce heat stress. The THI refers to a measure used to evaluate
the combined effects of temperature and humidity on the well-being and performance of
animals, particularly livestock, such as dairy cattle, poultry, and pigs. It is commonly used
in agriculture and animal husbandry to assess the risk of heat stress, which can significantly
impact animal health, productivity, and welfare [18]. Limiting ourselves to such features has
multiple benefits in our case: (i) physiological relevance and precedent: The THI is the most
widely validated single metric of heat load in dairy cattle; it outperforms raw temperature
or humidity and correlates strongly (around 0.80) with rectal temperature, the respiration
rate, and milk-yield depression [19–21]. Behavioral studies likewise show the shade-seeking
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probability rising sharply once the THI exceeds 72 [18]; (ii) practical sensor availability: Our
aim is an easily deployable decision-support tool. Ambient temperature and humidity are
already monitored on most farms at less than EUR 100 per node, whereas pyranometers,
anemometers, or infrared thermography entail much higher cost and maintenance. Limiting
features to THI-based signals therefore maximizes the real-world uptake; (iii) capturing
acute and carry-over heat load: we enrich the raw THI with two derivatives—the day-time
accumulated THI (area under the curve) and the previous-night mean THI—to reflect both
immediate stress and overnight recovery debt, which existing ML studies seldom include;
and (iv) interpretability: keeping three biologically grounded predictors simplifies rule
extraction for the downstream fuzzy controller and avoids multicollinearity inflation. To
the best of our knowledge, no previous study has forecast dairy-cow heat stress behavior
from camera-derived shade-seeking counts combined with THI-based features. Earlier
machine learning approaches relied on production traits and environmental sensors rather
than behavior [22,23] or used computer vision for other behaviors, such as feeding and
rumination [24]. Hence, the present study is the first to deliver a low-latency, behavior-
based predictive system for heat stress management. In summary, in this paper, we
therefore aim to select the most appropriate AI approach to predict the number of cows
in the shade under different THI conditions. To this end, Decision Trees, Random Forest,
and Neural Networks will be assessed. Animals exposed to high temperatures often
exhibit behavioral adaptations to alleviate thermal discomfort. Among these, seeking
shade is a primary response, even preferred over other cooling strategies, like sprinklers
or showers. Of course, providing shaded areas can effectively reduce the thermal load
on animals, enhancing their comfort and performance. Moreover, a study by Schütz et al.
(2010) highlighted that dairy cattle prioritize access to shade under heat stress conditions,
underscoring its importance as a mitigation strategy [25].

Our methodology incorporates novel features derived from the raw data, such as the
accumulated THI and the previous night’s average THI, to capture both immediate and
cumulative effects of heat stress on cow behavior. Additionally, this study is among the
first to compare Random Forests and Neural Networks in this context, offering insights
into the trade-offs between accuracy and interpretability for real-world farm management.
The use of 5-fold cross-validation ensures robust model evaluation, minimizing bias and
variance across a limited dataset.

The remainder of this paper describes the dataset and models (Section 2), presents
the results (Section 3), discusses their implications (Section 4), and summarizes the main
conclusions (Section 5).

2. Materials and Methods
2.1. Dataset Description, Processing, and Tuning

The dataset for our study originates from a farm located in Titaguas, València in Spain.
This farm includes a feedlot with a shaded area in the center, monitored by three cameras
that count the number of cows within the shaded area. The dataset consists of observations
taken every 5–10 min during the summer of 2023, spanning from 11 July 2023 to 16 October
2023. The observations differ between day and night.

During the day (from 07:00 to 21:00), each observation includes the number of cows
in the shade, the temperature (in degrees Celsius), the relative humidity (in percent), and
the exact time of observation. As for the night-time (from 21:00 to 07:00), each observation
includes the temperature, relative humidity, and the exact time of observation, since the
number of cows in the shade is meaningless. Similar to the day-time data, temperature and
relative humidity are recorded to track night-time environmental conditions.
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From these data, we have derived new variables for use in the models, in addition
to the number of cows in the shade and the time. Firstly, the time variable has been
transformed into a continuous real value for model training. This transformation allows
the model to process time as a numerical feature rather than a categorical one. Secondly,
with temperature and relative humidity, we calculate the Temperature–Humidity Index
(THI). There are different formulas to calculate the THI depending on the context, the type
of animal, and the region (see [26] and the references therein). In our case, the formula we
are using, originally proposed by the National Research Council (NRC) in 1971 [27], is

THI = (1.8 × Tdb + 32)−
(
(0.55 − 0.0055 × RH)× (1.8 × Tdb − 26)

)
, (1)

where Tdb is the dry bulb temperature in Celsius, and RH is the relative humidity in decimal
form. This index serves as a key indicator in our models, quantifying the combined effect of
temperature and humidity on the cows’ comfort. Furthermore, we derived two additional
variables from the THI: the previous night’s THI, calculated as the average of the previous
night, and the accumulated THI, which is the average from the first hour of the day (07:00)
up to the current observation time.

The dataset includes the following variables (columns):

• Number of cows in the shade.
• Exact time of observation.
• The current THI.
• The average THI of the previous night.
• The accumulated THI.

As we may expect, pairwise Pearson correlations revealed a strong association between
the current THI and the accumulated THI (r = 0.87). Linear variance-inflation diagnostics
yielded a value of 18.4 for the Accumulated THI, whereas the remaining predictors showed
VIF smaller than 6.1 (see Table 1). Although this indicates multicollinearity in a linear
setting, tree-based methods are known to be robust to correlated inputs; nevertheless, we
provide additional robustness checks in Section 3.

Table 1. Linear variance-inflation (VIF) of the derived variables.

Variable Current THI Accumulated THI Average THI Night Time

VIF 5.15 18.41 6.07 4.46

We restricted the feature space to three THI-based covariates plus the time of day to
test a low-cost representation that can be computed on a farm in real-time. We acknowledge
that omitting additional environmental—e.g., solar radiation and wind—and individual-
level factors—e.g., parity and health status—may limit explanatory power; these will be
explored in future extensions.

Initially the data spanned from 11 July 2023 to 16 October 2023, covering a total of
98 days, and we were ultimately left with 75 days of data due to some days not being
correctly recorded. This results in a total of 6907 observations. Each day has distinct
characteristics or variables, so we employed a cross-validation with 5 folds for model
validation. This choice is motivated by several reasons, including the need to assess
the model’s performance reliably with a limited dataset and to ensure that the model
generalizes well to unseen data (see [28,29]).

For each fold of the cross-validation, we randomly selected 20% of the days (15 days)
for testing and used the remaining 80% (60 days) for training the model. Importantly,
the test sets form a partition of the total dataset, meaning that for each fold, the test
set contains no data from the other test sets. Figure 2 shows a diagram of how this
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partition is performed. Therefore, the model is trained for each of the 5 folds, using around
5538 observations for training and 1369 for testing on each one.

75

DATASET (75 DAYS)

15 15 15 15 15

Divide into 5 folds of equal size (15 DAYS)

Test Exp. 1→ Res. 1

Test Exp. 2→ Res. 2

Test Exp. 3→ Res. 3

Test Exp. 4→ Res. 4

Test Exp. 5→ Res. 5

Run experiments
using 5 different

partitions
Compute
the mean

Ensemble
result

Figure 2. Cross-validation ensemble: the complete dataset is divided into 5 folds. We run 5 experi-
ments with different partitions (of test and training). Each experiment gives a result. The final result
of the ensemble is the mean of the obtained results of the experiments.

For determining the model performance, we use the root mean square error (RMSE).
This metric indicates how far the model predictions are from the real data observations,
being 0 for perfectly accurate predictions. The RMSE provides an estimate of the number
of cows for which the predictions differ from reality. Its formula is

RMSE =

√√√√ 1
N

N

∑
i=1

(
yi − ŷi

)2,

where {yi}N
i=1 represents the actual data and {ŷi}N

i=1 represents the corresponding predic-
tions, with N being the test dataset length. Note that when we report this error metric for
the entire dataset, it is calculated as the mean of the values across all cross-validation folds.

Regarding preprocessing and tuning the time of day was encoded as a continuous
numeric variable. For tree-based models no feature scaling was applied; for the Neural Net-
work, inputs were z-standardized. We excluded days with incomplete logging (resulting in
75 days) and dropped rows with missing predictors during training; no imputation was
used for trees. Hyperparameters were selected via 5-fold cross-validation: for the Random
Forest we evaluated num.trees 10, 50, 100, 200, 500, 1000 and max.depth 1, 3, 5, 10, 15, 25, 50.
The final setting (10 trees, max depth = 5) achieved a near-optimal error while preserving
interpretability.

In the rest of the section, we detail the methods used for model development and
validation. It presents the performance metrics and insights from the machine learning
models applied to predict the number of cows seeking shade in response to different
environmental conditions. Each of these models offers different advantages in terms of
accuracy and interpretability (see Section 1), and we will analyze their results to determine
the most appropriate approach for this problem. More specifically, we begin examining
the Decision Tree, a highly interpretable model that provides valuable insights into the
key factors that determine cow behavior. We then move on to Random Forests, which
combine multiple Decision Trees to improve prediction accuracy and reduce overfitting.
Finally, we will discuss the performance of Neural Networks, which offer a more complex
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and flexible framework for capturing nonlinear relationships between variables but with
less interpretability.

All computations, including data processing, model training, and inference time
measurements, were performed on a workstation equipped with an Intel® Core™ i7-12700
CPU @ 2.10 GHz, 32 GB RAM, running Ubuntu 22.04 LTS and Python 3.11 with scikit-learn
1.3.1 and PyTorch 2.1.0. No GPU acceleration was used.

2.2. Soft Computing Decision Tree Algorithm

A Decision Tree is a type of supervised learning algorithm used for both classification
and regression tasks. It works by splitting a dataset into smaller subsets according to
the possible outcomes that may occur depending on decisions, as shown, for example,
in Figure 3. The tree starts at the root node (representing the entire dataset and the first
attribute/feature) and splits the data into subsets based on an attribute that maximizes a
specific criterion.

THI ≤ 80.05

Time ≤ 08:59:31

THI accum ≤ 53.38

32.91
(3.6%)

24.78
(10.9%)

THI ≤ 75.70

8.79
(48.1%)

20.52
(23.7%)

Time ≤ 17:29:15

THI accum ≤ 75.57

33.97
(7.7%)

56.14
(3.5%)

Time ≤ 18:38:45

24.53
(1.6%)

6.00
(0.8%)

True False

Figure 3. Decision Tree. The color represents the number of cows in the shade: the more intense the
color, the more cows are in the shade that meet these conditions. The values in the terminal nodes are
the predictions for the number of cows in the shade, and the percentages indicate the proportion of
samples that meet the condition (there are a total of 5538 samples).

Let us explain how the algorithm divides each node [30,31]. Assume that a particular
N node has some observations. The predicted value of the model for that node consists of
the mean yN of the values of the observations in it. Then, the training squared error can be
computed as

EN =
1
|N| ∑

xi∈N
(xi − yN)

2 = σ2
N ,

that is, the variance (here |N| is the number of elements on N). However, many points with
different values can be in the same node, causing a huge error, so it will be split into two
groups (nodes), N = N1 ∪ N2, where

N1 =
{

xi ∈ N : xj
i ≤ t

}
, N2 =

{
xi ∈ N : xj

i > t
}

.

To achieve this, a variable j and a threshold t must be selected such that the resulting
partition creates two new nodes (N1 and N2) with the lowest possible error, minimizing
EN1 + EN2 . This process is repeated for each node that contains more observations than
a predefined threshold (in our case 2), or when the node reaches a depth greater than a
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set value, which represents the number of splits from the root node to the current one.
The final nodes, which can no longer be split, are called leaves.

Once the tree is trained, that is, all the conditions and thresholds are known, its
prediction of a new observation x is computed as follows. The observation starts from the
root node and follows the branches according to the conditions satisfied until it arrives at
a leaf L. The predicted value for x is yL, and the mean of all training observations in the
node is L.

The deeper the tree and the smaller the allowed nodes (in terms of the minimum
number of observations required at each node), the smaller the error in the training set. In
the extreme case where each leaf consists of only one observation, the training error will be
0, but this does not mean that the error will be lower when predicting new observations (for
example, on the test set). This phenomenon is known as overfitting, and we will see how
the selection of hyperparameters is performed to allow the model to be flexible enough to
fit the data without being overfitted.

In our particular case the Decision Tree model is particularly well suited for under-
standing how individual features influence cow behavior, as it visually represents decision
rules in a hierarchical structure. This makes it easy to identify the thresholds and conditions
under which cows are most likely to seek shade.

In the following, we present the structure of the Decision Tree model applied to our
dataset. Figure 3 shows a tree with a depth of 3 for illustrative purposes, offering a clear
representation of the key factors involved (current THI, time of day, and THI accumulation).
Indeed, as can be seen, the main factor at the root of the tree is the THI, with a threshold
value of 80.05. This indicates that when the THI exceeds this value, cow behavior changes
significantly, with more cows seeking shade.

However, as shown in Table 2, the optimal depth for the Decision Tree model is 5,
yielding an RMSE of 16.027. This depth level allows the model to capture the complexity of
the relationships between the THI, time, and cow behavior without overfitting the data.
Interestingly, as the depth increases above 5, the error also begins to increase. This suggests
that the model begins to overfit, capturing noise instead of meaningful patterns. Overfitting
is a common problem in Decision Trees, especially when the depth is allowed to grow
too large, as the model becomes too specific to the training data, losing generalizability.
Of course, although deeper models can incorporate more variables, potentially including
the THI from the previous night, the lack of relevance in the 3-depth model indicates that
immediate environmental conditions play a much more important role in determining cow
movements to shaded areas.

Table 2. Decision Tree errors (RMSE) for different tree depths, ranging from 1 to 50. The model with
the lowest error is highlighted in blue.

Depth 1 3 5 10 15 25 50

RMSE 17.994 16.711 16.027 18.764 19.941 20.235 20.219

Although the Decision Tree provides a clear and interpretable model, it may be
interesting to explore other methods that capture more complex interactions between
variables. This is the purpose of the next types of algorithms.

2.3. Soft Computing Random Forest Algorithm

As the performance of a Decision Tree is limited, an ensemble of many of them can
be considered to form a Random Forest—which also works for classification and regres-
sion tasks. This method is particularly effective for improving accuracy while mitigating
overfitting. The Random Forest is an ensemble of multiple Decision Trees combining the
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predictions of several base estimators to improve robustness and accuracy. It provides
estimates of feature importance, which can help in understanding the underlying structure
of the data (see [32,33]). This model is less interpretable compared to a single Decision
Tree due to the aggregation of multiple trees and can also be slower to train compared to
simpler models, especially with large datasets.

The algorithm works as follows: given an observation x, the output of the Random
Forest is given by the mean of the prediction of all Decision Trees in the case of regression
or the majority vote in classification (see Figure 4).

Training Data

Sample and feature bagging

. . .

Tree 1 Tree 2 Tree n

Mean in regression or majority vote in classification

Prediction

Figure 4. Random Forest working example.

To avoid having the same tree each time, which would have no improvement when
averaging them, some randomness is intentionally introduced on each one, which is usually
both included in the training set and the variables used. A fixed number of variables are
randomly selected for each tree (three out of four, in our case). Moreover, not all training
sets are considered on each tree, with a sample of the training dataset allowing duplicates.
This process is known as bootstrapping.

The performance of the Random Forest model is evaluated in comparison to single
Decision Trees, focusing on its error reduction capabilities as the number of trees increases
and in relation to tree depth. In Figure 5, we observe that the model with a tree depth of
5 (see the green line) achieves the best fit for our dataset, consistent with the optimal depth
observed in the Decision Tree model. Note that increasing the depth, while providing a
better fit to the data used for building the model, declines the overall performance when
tested on unseen data. As the number of trees increases, the error (measured by RMSE)
decreases, demonstrating the benefit of using an ensemble of trees. However, beyond
10 trees the error stabilizes, resulting only in marginal gains (around a 0.08 decrease from
10 to 1000 trees). For this reason, we opted to use a model with 10 trees, which offers a
reasonable balance between accuracy and interpretability, achieving an RMSE of 14.965.

The trade-off between the number of trees and model interpretability is crucial. While
more trees generally improve accuracy, especially in complex, high-dimensional datasets,
the added complexity can make it harder to interpret the model’s behavior. In our case,
using 10 trees allows us to retain a high level of interpretability while achieving near-
optimal performance.
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Figure 5. Random Forest errors (RMSE) for varying numbers of trees (ranging from 1 to 1000) and
depths (ranging from 1 to 50). The dashed lines in lighter colors represent the errors of single Decision
Trees with corresponding depths, used as a reference for comparison with the Random Forest model.
The chosen model, marked with a star, balances accuracy and computational efficiency.

2.4. Soft Computing Neural Networks Algorithm

A Neural Network is a model inspired by the human brain’s structure and function. It
consists of interconnected layers of nodes (called neurons), as shown in Figure 6, where
each connection has a weight that adjusts as learning progresses. It can be used to identify
patterns and relationships in data through a training process, but also for classification
and regression. During training, the network learns by adjusting weights based on the
errors of its predictions compared to known outcomes (see [34,35]). Each layer consists
of a linear transformation and a composition with a nonlinear function. The number of
layers, the dimensions of each one, and the nonlinear functions used on each are fixed as
hyperparameters of the model, while the weights of the linear transformation are optimized
on the training.

x

Input Layer Hidden Layers Output Layer

ŷ

Figure 6. Scheme of an example of a (Fully Connected) Neural Network. The input x represents the
input data, while ŷ denotes the model’s prediction. The network consists of an input layer, multiple
hidden layers, and an output layer.

During training, backpropagation is used to adjust the network weights. This process
consists of calculating the model prediction, ŷ, for each observation x in the training dataset
and comparing it to the true target, y. If ŷ does not coincide with y, the weights are updated
to reduce the prediction error. This is achieved using a gradient-based optimization
algorithm that minimizes the squared error (y − ŷ)2 (SGD or Adam algorithm). Weight
updates are propagated backward through the network, layer by layer. Training is repeated
for all observations in the training dataset during a fixed number of times, called epochs,
or when the error in some test dataset attains a minimum (early stopping parameter). For
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the best performance of the (Fully Connected) Neural Network (FCNN) model and to
avoid variables with larger scales having more influence on the predictions, all variables
are scaled so that their mean is 0 and their standard deviation is 1.

Neural Networks are powerful models capable of capturing complex, nonlinear re-
lationships between inputs and outputs. By stacking multiple layers of neurons, these
networks can approximate intricate patterns in the data effectively. In the following sec-
tions, we will assess the performance of different configurations of the Neural Network.
Our focus will be on how factors such as the learning rate, the number of neurons per layer,
and the total number of layers influence the predictive accuracy of the model.

There are several activation functions available for use in Neural Networks [36,37].
However, for our FCNN implementation, we have selected the Rectified Linear Unit
activation function for hidden layers. This function, mathematically expressed as
ReLU(x) = max(0, x), allows the network to efficiently model nonlinear relationships in
the data. For the output layer, we use a linear activation function defined as Linear(x) = x.
This ensures that the output can take any real value, which is suitable for our prediction task.

The primary challenge when working with Neural Networks lies in determining the
optimal architecture—balancing the depth (number of layers), width (number of neurons
per layer), and learning rate. While deeper and wider networks have the potential to
capture more intricate patterns, they also increase the risk of overfitting and may require
significantly more computational resources. Hence, selecting the right configuration is
critical to achieving both accuracy and efficiency. To rigorously identify the architecture,
45 different Neural Networks have been tested with all the combinations of these hyperpa-
rameters: 1, 3, or 5 layers with 4, 16, 64, 256, or 1024 neurons each, and a learning rate of
10−2, 10−3, or 10−4. All models are trained for 50 epochs to ensure convergence.

Table 3 shows the performance of eight Neural Network models with varying configu-
rations. The results indicate that the most efficient model, in terms of balancing complexity
and error, is Model 2, which has 3 hidden layers with 16 neurons in each layer and a
learning rate of 10−3. This model achieves an RMSE of 14.784 using only 641 parameters,
making it accurate and relatively simple compared to other more complex models. Below,
we discuss the key factors that affect the performance of Neural Networks.

Table 3. Performance of the best error-based models (RMSE) with different learning rates (lr), neurons,
and layers. We also show the number of parameters to optimize and the training time (in seconds) of
each model. In blue is the best model balancing complexity (number of parameters) and RMSE.

lr Neurons Layers Parameters Time (s) RMSE

1 10−3 16 5 1185 22.54 14.729544
2 10−3 16 3 641 17.41 14.783720
3 10−4 256 3 133,121 68.66 14.841024
4 10−4 64 5 17,025 47.32 14.892802
5 10−3 1024 1 8705 27.92 14.908759
6 10−4 64 3 8705 50.19 14.983424
7 10−2 64 1 385 29.80 15.005318
8 10−3 256 1 1537 31.43 15.127514
9 10−2 256 1 1537 27.48 15.414012
10 10−3 64 1 385 27.19 15.565035

One clear observation from the results is that increasing the number of neurons
per layer does not always yield better results. For instance, Model 1, with 5 (hidden)
layers and 16 neurons per layer, achieves an RMSE of 14.73, comparable to Model 4,
which has 64 neurons per layer and a slightly higher error (14.89). This suggests that
simpler architectures can perform well, avoiding excessive model intricacy. Additionally,
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models with fewer layers, such as Model 2 with only 3 layers and 16 neurons per layer,
achieve competitive error values, demonstrating that adding more layers may introduce
unnecessary complexity without significant performance gains.

Another crucial hyperparameter that affects model performance is the learning rate
(lr). In our experiments, we tested different rates: 10−2, 10−3, and 10−4. The results reveal
that higher learning rates, such as 10−2 (Model 7, RMSE 15.005), hinder convergence, while
lower rates tend to produce lower error values, especially when used with a smaller number
of layers and neurons.

Finally, in the five best configurations, the RMSE values remain in a narrow range
between 14.7 and 14.9. Despite the variations in layers, neurons, and learning rates, the best
performing models (Models 1 and 2) show very close error values, with a difference of only
0.05. Given these minimal differences, we selected Model 2, which has fewer parameters (641)
and is therefore more computationally efficient (training time of 17.41 s) without compromising
accuracy. This balance between simplicity and performance makes it an ideal choice for
practical applications requiring faster training times and lower resource consumption.

From Figure 7, it is evident that increasing the number of epochs beyond 10 does not
significantly improve the model error. After about a decade of epochs, further training
offers little to no advantage in terms of predictive accuracy. This insight is particularly
relevant for applications requiring instant model recalculations, such as real-time systems,
where the model could effectively operate with this number of epochs. This approach
allows for greater efficiency in terms of training time and computational resources without
significantly affecting the model’s performance. For this reason, we set the number of
epochs to 10 for the final model.

Figure 7. Evolution of RMSE for Neural Networks over 50 training epochs.

3. Results
3.1. Global Model Performance

We begin by comparing the three machine learning models implemented: Decision
Tree with 5 depth, Random Forest consisting of 10 trees all with 5 depth, and a Neural
Network with 3 hidden layers of 16 neurons each, 10−3 learning rate, and trained for
10 epochs. The comparison is given not only in terms of RMSE but also in terms of training
time, interpretability, and explainability (see Figure 1).
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On the one hand, the Decision Tree model has an RMSE of 16.03, which is the highest
among the models compared, meaning it is less accurate for prediction. Moreover, the train-
ing time of the Decision Tree is extremely low (0.01 s), making it particularly suitable
for scenarios where fast model training is essential. However in terms of interpretability,
the Decision Tree scores Very High (which means the model is easy to understand), as its
structure is simple and intuitive, resembling a flowchart. In a similar way the explainability
of the Decision Tree is rated as high, meaning that the decision-making process of the model
can be clearly explained, making it easier to trace the reasoning behind predictions.

The Random Forest model has a slightly lower RMSE of 14.97, indicating better
accuracy compared to the Decision Tree. The training time of the Random Forest model is
slightly higher (0.07 s) but still sufficiently fast to be practical in settings requiring frequent
model re-training. Its interpretability is rated Medium/High. Although more complex than
a single Decision Tree due to the ensemble of trees, it still maintains some interpretability
because individual trees can be analyzed. The explainability of the Random Forest model
is rated as Medium, as it is harder to fully explain how multiple trees work together in the
ensemble, but some level of explanation is still possible.

Finally, the Neural Network model has the lowest RMSE of 14.78, making it the most
accurate of the three models in terms of predictions. However, this gain in predictive
accuracy comes at the cost of a significantly longer training time (3.48 s). Furthermore,
the interpretability of this model is low, meaning it is difficult to understand how the
model works, due to its complex structure with layers of interconnected neurons. Similarly,
the explainability is rated low, as it is challenging to explain how the model arrives at
specific predictions, making it a black box in many cases.

This comparison (see Table 4) highlights a trade-off between accuracy (RMSE), inter-
pretability, explainability, and training time: models with better accuracy, like the Neural
Network, are harder to interpret, explain, and also require significantly more time to train;
conversely, the Decision Tree offers higher interpretability and explainability, with slightly
lower accuracy and minimal training time. The Random Forest stands as a compromise
between prediction error, model transparency, and computational efficiency.

Table 4. Comparison of final model using four criteria: training time, RMSE, interpretability and ex-
plainability. The preferred model is highlighted in blue.

Model Time (s) RMSE Interpretability Explainability

Decision Tree 0.01 16.03 Very High High
Random Forest 0.07 14.97 Medium/High Medium
Neural Network 3.48 14.78 Low Low

Finally, permutation-based variable-importance analysis (see Figure 8) confirms that
the time of day is by far the dominant predictor: permuting this variable increases the
out-of-bag MSE by around 213%. The next two variables are the current THI (around 142%)
and the accumulated day-time THI (around 102%). In contrast, permuting the night-time
mean THI raises the error by only around 46%. Taken together, these results indicate
that the model relies primarily on the circadian pattern captured by the time float, while
the instantaneous and cumulative day-time heat load provide substantial—but partially
overlapping—information. The thermal conditions of the previous night contribute to a
lesser extent but still improve performance beyond day-time metrics alone.
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Figure 8. Permutation importance averaged over the 10 tree, 5 depth Random Forest.

3.2. Error Distribution Analysis

Now, we compare the real and predicted values for the number of animals seeking
shade over the span of 75 days. By analyzing the raincloud plot shown in Figure 9, we can
draw several conclusions about the model’s performance in terms of RMSE values.

First, the model’s predictions are generally consistent, as indicated by a median RMSE
of 13.84. This relatively low median error suggests that the model performs accurately on
average. The interquartile range (IQR) of the daily RMSE values (10.48–17.23) represents
roughly 57–94% of the average number of cows observed in the shade (18.3) and only
13–22% of the full scale of the target variable (0-80). This proportion indicates that most
daily prediction errors remain tightly clustered, supporting the description of the error
distribution as compact (see Figure 9). Moreover, we assessed the distribution of daily
RMSE values: a Shapiro–Wilk test did not reject normality (p = 0.495). We therefore report
the median (13.84; bootstrap 95% CI of 12.70–15.35) together with the IQR, which confirms
that daily errors are tightly concentrated.

Figure 9. Raincloud plot representing the distribution of Random Forest errors (RMSE) calculated for
each day across each cross-validation partition. The box shows the interquartile range (IQR), with the
median error represented by the central line within the box, which is 13.84. The whiskers extend to
the minimum and maximum RMSE values. Distribution of the days and the first (Q1) and third (Q3)
quartiles are also given.



Mathematics 2025, 13, 2662 15 of 21

Second, the plot reveals a few RMSE values extending toward the extremes (and
above 25). This indicates that, in certain cases, the model performs less accurately. These
outliers may correspond to specific scenarios or data points where the model struggles to
generalize, possibly due to variations in environmental conditions or unmodeled factors.
Addressing these cases could involve incorporating additional features or refining the
model to improve its generalizability.

Figure 10 summarizes the daily errors of the Random Forest. Applying Tukey’s rule
(Q3 + 1.5IQR) did not yield any statistical outliers: the dashed line is above the highest
observed RMSE. Therefore, we have labeled the top decile of the distribution (orange
circles) as days with “high error”. All of these are grouped into a daily average THI above
75, confirming that large deviations only occur under the most severe heat loads and not
due to random problems with the data or model instability. The absence of real outliers
supports the idea that Random Forest errors behave well throughout the study period,
with performance degrading smoothly as heat stress intensifies.

Figure 10. The daily prediction error (RMSE) plotted against the corresponding daily mean THI.
Black circles mark days within the interquartile range; orange circles highlight the upper decile of
errors (RMSE > p90). The dotted horizontal line denotes the p90 threshold, while the dashed line
shows the Q3 + 1.5 · IQR value.

Although no statistical outlier was detected, the day with the single largest
error—RMSE = 27.5, 11 July 2023, Figure 11a—coincided with an afternoon THI peak
of 85.2. By contrast, the day with the lowest error—RMSE = 5.0, 15 October 2023,
Figure 11b—never exceeded THI = 71 and displayed fewer than ten cows in shade through-
out the afternoon; the model therefore remained within ±2 animals of the observations.
Because these high error cases represent only 13% of the evaluation period and cluster
in the upper tail of the THI spectrum, their impact on the overall performance metrics
is limited, yet they highlight the need for additional features, such as solar-radiation or
wind-speed indices—for forecasting under extreme heat.
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(a) Model predictions for 11 July 2023 (b) Model predictions for 15 October 2023

(c) Model predictions for 9 September 2023 (Q2) (d) Model predictions for 20 July 2023 (Q3)

Figure 11. Random Forest predictions for specific dates corresponding to the maximum (a) and the
minimum RMSE values (b), and also to the median (c) and the third quartiles (d). These figures
follow the same format as Figure 12.

3.3. Case Studies

Hereafter, we present the real and predicted values for the number of animals in
the shade over the course of the day corresponding to the first quartile in terms of that
day’s RMSE (18 August 2023), by using our Random Forest algorithm. We also include
information about the THI (accumulated day, mean night, and current).

As illustrated in Figure 12, early in the day, from 07:00 until around 11:00, the number
of animals in the shade is low, corresponding with lower THI values. Both real and
predicted values are similar during this period. Between 11:00 and 17:00, as the current THI
increases sharply, there is a remarkable increase in the number of animals seeking shade.
This trend is captured well by both the real and predicted data, although the predicted
values (orange line) display a smoother, less variable appearance. This effect arises because
each tree in the Random Forest makes piecewise-constant predictions over large regions of
the input space, and the final output is averaged across multiple trees and cross-validation
folds, which naturally smooths out local fluctuations in the data.
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Figure 12. Random Forest predictions for 18 August 2023, with the day corresponding to Q1. The
left Y-axis (with continuous lines) represents the number of animals in the shade (ranging from 0 to
80), the right Y-axis (with dashed lines) indicates the value of the THI (ranging from 55 to 85), and
finally, the X-axis displays the time of day (ranging from 07:00 in the morning to 21:00 in the evening).
The blue line represents the real data, and the orange line shows the predicted values. Additionally,
the dashed blue line represents the current THI, the dashed orange line indicates the accumulated
THI throughout the day, and the green dashed line represents the average night-time THI of the
previous day.

After 17:00, as the THI decreases, the number of animals in the shade also drops
significantly, and both real and predicted values approach zero towards the end of the day.
The predictions of the Random Forest model (orange line) follow the general trend of the
real data (blue line) reasonably well. However, there are some discrepancies, especially
towards midday and early afternoon (from 13:00 to 17:00), where the model slightly
overestimates the number of animals in the shade. On the other hand the THI accumulated
during the day (dashed orange line) increases throughout the day, reflecting the cumulative
heat stress experienced over time. This cumulative THI could have a prolonged impact on
animal comfort, contributing to the increased use of shaded areas as animals try to avoid
heat stress.

Finally, as we can also see in Figure 11, the prediction model in the three plots (Q1, Q2,
and Q3) follows the general trend but, as expected, the prediction overlooks short-term
fluctuations. Particularly, it predicts when more animals move into the shade and when
they leave with an accuracy of less than 90 min. Indeed, for each of the 75 days, if we
compute the absolute difference between the predicted and the observed time of the daily
shade-seeking peak, then the mean absolute deviation is 102.4 min with a 95% confidence
interval of 71.6–133.3 min (t-based CI, n = 75). In addition, 69.3% of days show an error
below 90 min, being the Wilson 95% CI for that proportion of 57.6–79.5%. However, it
cannot find the exact number of cows in the shadow area. This fact, may indicate that other
factors affect the animals’ decisions, but the time, THI, and accumulated THI at day-time
and night-time explain most of its behavior.

4. Discussion
In this work, we have analyzed the performance of three soft computing machine

learning models—Decision Trees, Random Forests, and Neural Networks—to predict the
number of cows seeking shade as a response to varying environmental conditions. Using
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data from a farm in Titaguas, Valencia, the research aimed to determine which model
could best predict shade-seeking behavior in response to the Temperature–Humidity Index
(THI), a key indicator of thermal stress in cattle, while also exploring the capabilities and
limitations of these models for livestock management under heat stress conditions.

The results have shown that each model has distinct strengths. Neural Networks
provided the highest accuracy, with a root mean square error (RMSE) of 14.78, followed
closely by the Random Forest at 14.97 and the Decision Tree at 16.03. However, model
performance was not evaluated solely based on accuracy. Interpretability and explainability
were also central to the evaluation, especially for practical applications in farm management.
Although the Decision Tree model is the most interpretable (given its flowchart structure
that allows direct analysis of how different variables influence predictions), Random Forests,
while more complex, retain some interpretability as individual trees can be analyzed to
understand decision pathways. In contrast, Neural Networks, despite their high accuracy,
were the least interpretable due to their multi-layered structure, often referred to as a black
box in machine learning.

Taking these factors into account, Random Forests has been chosen as the optimal
model, offering a balance between accuracy, interpretability, and explainability. It has
effectively captured overall trends in cow movement patterns, accurately predicting when
cows would seek or leave shaded areas within a 90 min precision in most instances. This
precision is important in real-world applications, where timely interventions can help
mitigate the effects of heat stress.

The performance gap between the Random Forest model and the Neural Network
is small (around 0.2 RMSE), yet the tree-based ensemble is far easier to interpret and is
inherently robust to noisy or missing inputs—an essential property in commercial farms
where cameras may be hidden and low-cost sensors drift over time. This robustness
makes the model an ideal upstream component for a hybrid soft-computing controller: its
predicted shade-seeking count can feed a fuzzy logic rule base that activates fans, sprinklers,
or retractable awnings, according to linguistic rules, such as “if THI is high and Predicted
Shade is many, then increase airflow”. In practice, the Random Forest supplies a single
scalar output—the predicted number of cows expected to occupy the shade 15 min ahead.
That value is fuzzified into three linguistic levels (LOW, MEDIUM, HIGH) using the 33rd and
66th percentiles of the training distribution as thresholds. A compact rule base then maps
each level to a management action, e.g., IF Predicted Shade = HIGH THEN set ventilation
to level 2; IF Predicted Shade = MEDIUM THEN level 1; ELSE keep fans off. This one-to-one
conversion—scalar → fuzzy label → actuation rule—keeps the controller transparent while
retaining the data-driven accuracy of the forest.

In this article, several variables influencing shade-seeking behavior have been identi-
fied: in particular, the time of day, current THI, and cumulative THI throughout the day
and night. These factors strongly correlated with the cows’ movement towards or away
from shaded areas, underscoring their relevance in managing thermal stress. Although our
feature set is intentionally minimal—THI plus time—real-world implementation across
locations will benefit from additional covariates (global solar radiation, wind speed, shade
capacity, stocking density). Furthermore, as part of the European Re-Livestock consortium,
this study can be replicated on farms in other climates, allowing us to test alternative THI
formulations used in different regions. These steps will help turn the current prototype into
a multi-site decision-support tool. Beyond our single-site study, we will conduct external
validation across contrasting farms and seasons (leave-one-farm-out), improve portability
via site-specific quantile recalibration of decision thresholds and light fine-tuning on a
small local subset, and monitor concept drift with scheduled re-training as datasets scale.
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However, some limitations have also been identified. The models struggled to accu-
rately predict the exact number of cows under shade, suggesting that other variables not
included in this study may also influence this behavior. Future research could explore these
additional factors to enhance model performance.

Finally, we would like to point out that this work focuses on modeling and validation
aspects; operational integration—sensor status monitoring, latency budgets, and user
interface—is highly site-specific and requires prospective trials on farms that exceed the
scope of this study. Given the sampling rate of 5 to 10 min and inference in less than a
second on commercial hardware, computational latency is not expected to be limiting; we
leave the full details of implementation to a follow-up implementation study.

5. Conclusions
This study demonstrates the potential of using soft computing approaches for mathe-

matical modeling of noisy and highly variable biological behaviors. Using only climatic
measurements and camera counts, both Random Forests and Neural Networks accurately
predicted the number of dairy cows seeking shade during Mediterranean summer heat
waves. The main conclusions are as follows:

Early warning capability: The models anticipate shade-seeking peaks within one hour,
with a median daily RMSE of 13.84 cows.
Interpretability: A 10-tree Random Forest (depth = 5) achieves an average RMSE of
14.9 while retaining a transparent rule structure, making it the recommended choice for
on-farm deployment.
Minimal feature set: Three easily derived thermal features—the current THI, the ac-
cumulated day-time THI, and the mean night-time THI—are sufficient for a low-cost
decision-support system that can trigger ventilation, sprinkling, or shading strategies in
real-time.

These results show that soft computing models provide robust, affordable tools for
precision livestock management aimed at mitigating heat stress and safeguarding ani-
mal welfare.

Limitations and External Validation

The limitations and external validation of this paper are as follows:

Explicit statement of scope: The present dataset represents one Mediterranean region—
Titaguas, Spain—during a single summer—June–September 2023. As such, it does not
include colder seasons, other housing layouts (as, for instance, composting barns) or
different breeds, nor does it capture climatic extremes, such as monsoonal humidity or con-
tinental heat waves. While the model performs well on the source farm, its generalizability
beyond Mediterranean summer conditions remains to be demonstrated.
Potential sources of bias:

(i) Management practices: Shade availability, stocking density, and cooling protocols vary
widely across farms; these factors could shift the threshold at which cows seek shade.

(ii) Regional weather patterns: Diurnal THI dynamics in arid or tropical zones differ
from those in Mediterranean climates, possibly altering the relative importance of the
accumulated vs. the instantaneous THI.

Need for external validation: Future work will involve external validation on at least three
additional farms. Following the guidelines of Steyerberg [38], we will report calibration
curves and domain-transfer metrics.
Practical field applications: Finally, the current work stops short of detailing real-time de-
ployment aspects—such as latency budgeting, sensor-fault mitigation, and farmer-oriented
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user interfaces—because its primary aim is the methodological proof-of-concept. Al-
though preliminary benchmarks show the full inference pipeline runs on basic CPUs in
a short time and relies only on readily available temperature and humidity inputs, these
engineering questions will be tackled in a dedicated follow-up field study.
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