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Abstract 
Surgically castrated male pigs, which are commonly produced in pork production systems, have slightly lower production efficiency, compared 
to intact female pigs (gilts). This is mainly due to an unfavorable feed conversion rate and fatter carcasses. These differences influenced by 
physiological and genetic factors can be identified through metabolomics, which describes metabolic profiles. In this study, we used untargeted 
metabolomics to analyze the plasma of 694 Italian Large White pigs (228 castrated males and 466 intact gilts), sampled at slaughter. The metab-
olomic profiles included 731 metabolites covering 98 sub-pathways. The raw metabolomic data were cleaned and imputed using multivariate 
imputation by chained equations. The Boruta algorithm was then employed to identify metabolites that have different concentrations between 
castrated males and intact gilts. To address the random nature of feature selection, multiple Boruta runs were generated, and nested within a 
10-fold cross-validation, resulting in 1,250 Boruta datasets. These datasets helped identify 40 informative metabolites, with a reduced core of 
15 metabolites consistently confirmed across all runs. Their calculated random forest out-of-bag error was 0.25 and 0.27, respectively. The rele-
vance, ranking, and predictive ability of each selected metabolite were determined based on the mean decrease Gini (MDG) and the area under 
the curve (AUC) of the receiver operating characteristic curve analysis, with MDG values of 0.024 ± 0.007 and 0.030 ± 0.009 and AUC values of 
0.62 ± 0.04 and 0.65 ± 0.03 for the 2 metabolite sets, respectively. Of the 40 selected metabolites, 60% had higher concentrations in castrated 
males than in intact gilts, while in the 15 metabolites set, this percentage was 80%. Network and biological pathways analyses indicated that 
the selected metabolites were primarily amino acids and lipids, many of which belonged to their respective sub-pathways, suggesting minimal 
biological differences between castrated males and intact gilts. These findings support previous results obtained using a targeted metabolomic 
platform. This study represents the largest investigation to date on the pig sex metabolome, providing essential biological insights that could 
inform precise husbandry and feeding strategies in pigs, taking into consideration the castration status of the males.

Lay Summary 
Surgically castrated male pigs are commonly produced in many pork production systems, including Italy. Castrated males have slightly lower 
production efficiency, compared to intact female pigs (gilts), mainly due to an unfavorable feed conversion rate and fatter carcasses. These 
differences are influenced in part by the diverse hormonal state of the animals and in part by the genetic component, derived from the XY and 
XX chromosomal composition of males and females. At the molecular level, these differences can be identified through metabolomics, which 
describes the metabolic profiles of the pigs. In this study, we compared the plasma of Italian Large White castrated males and intact gilts. 
Data from about 700 metabolites were statistically elaborated using a pipeline that filtered samples and metabolites, performed missing data 
imputation, and conducted feature selection with machine learning approaches. A total of 40 metabolites were identified to discriminate the 
metabolomic profiles of castrated males versus intact gilts. Most of these informative metabolites are amino acids and lipids involved in the 
same respective biochemical pathways. This study may provide essential biological insights that could inform precise husbandry and feeding 
strategies in pigs, taking into consideration the castration status of the males.
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Graphical Abstract 

Key words: castration, machine learning, metabolite, pig, plasma, Sus scrofa
Abbreviations: AUC, area under the curve; CV, cross-validation; EDTA, ethylenediaminetetraacetic acid; ESI, electrospray ionization; FDR, false discovery 
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mean decrease Gini; MICE, multivariate imputation by chained equations; NMR, nuclear magnetic resonance; OOB, out-of-bag; PC, principal component; PCA, 
principal component analysis; PDO, protected designation of origin; PMM, predictive mean matching; QC, quality control; ROC, receiver operating characteristic; 
RF, random forest; RP, reverse phase; sPLS-DA, sparse partial least squares discriminant analysis; UPLC-MS/MS, ultra-performance liquid chromatography–
tandem mass spectrometry.

Introduction
Sex is one of the most important factors that affects many 
aspects of pig production systems, including husbandry prac-
tices. It has significant impacts on all economically relevant 
traits and also raises ethical issues related to the castration of 
males (Bereskin and Davey, 1976; Dunshea, 2001; Latorre et 
al., 2003a, b, 2008; Trefan et al., 2013; Patience et al., 2015; 
Van Der Heide et al., 2016; Borell et al., 2020; Elbert et al., 
2020; Squires et al., 2020). In this regard, normal male sex-
ual development is closely linked to the well-known issue of 
boar taint in meat. As a result, male pigs are often surgically 
castrated in many production chains to prevent boar taint 

and ensure that the resulting pig meat is then marketable (De 
Briyne et al., 2016; CASTRUM consortium, 2017; Mateos et 
al., 2024). Surgically castrated males, however, have slightly 
lower production efficiency due to an unfavorable feed con-
version rate and fatter carcasses compared to intact gilts. This 
has been shown in many studies across different breeds and 
production systems (D’Souza and Mullan, 2002; Gispert et 
al., 2010; Morales et al., 2011; Garitano et al., 2013; Puls 
et al., 2017). The production differences between surgically 
castrated males and intact gilts are relevant for several prac-
tical aspects, ranging from feeding to carcass grading. These 
differences may prevent the complete standardization of  
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husbandry practices and can lead to inhomogeneity in slaugh-
tered animals. Despite the importance of these effects, only 
a few studies have indirectly attempted to describe the bio-
logical mechanisms that determine these differences using 
molecular phenotypes (Orengo et al., 2014; Cai et al., 2015; 
Suárez-Belloch et al., 2015; Ohkoda et al., 2021; Moeser et 
al., 2022; Fardisi et al., 2023).

Metabolomics has emerged as a powerful tool for describ-
ing animal metabolism under specific conditions. By exploring 
a large set of small molecules circulating in a biofluid or pres-
ent in tissue, metabolomics has proven to be effective in iden-
tifying novel molecular descriptors for dissecting the biological 
complexity of the phenomena under investigation in different 
species, including livestock (Fontanesi, 2016; Goldansaz et al., 
2017; Hao et al., 2021; Imaz et al., 2022; Li et al., 2022). In 
pigs, metabolomics has been applied for various purposes, rang-
ing from the general characterization of biofluids to more spe-
cific investigations. These studies include breed characterization, 
evaluation of feeding strategies on metabolism, description of the 
effects of stress conditions, and analysis of the effects of genetic 
variability on metabolite levels, among other studies (e.g., Cai et 
al., 2015; Bovo et al., 2016, 2023, 2025a, 2025b; Picone et al., 
2018; Luise et al., 2020; Peukert et al., 2021; Wang et al., 2021; 
Song et al., 2022; Dervishi et al., 2023; Metzler-Zebeli et al., 
2023). In a previous investigation, we initially explored metabo-
lomic differences between castrated males and intact gilts from a  
performance-tested heavy pig population of Italian Large 
White pigs (Bovo et al., 2015). This was done through a tar-
geted metabolomics approach that quantified approximately 
180 plasma metabolites in finished 9-m-old pigs. Another study 
compared the serum metabolomic profiles of castrated males 
and intact females during the growing phase (Dervishi et al., 
2021). The cited study analyzed approximately 50 metabolites 
using nuclear magnetic resonance. Recently, Peukert et al. (2021) 
reported metabolomic differences between intact males and gilts 
of crossbred pigs analyzed at the blood, muscle, and liver levels 
using untargeted metabolomic platforms.

In this study, we significantly expanded the information on 
the metabolomic plasma profiles of Italian Large White pigs 
using a high-throughput untargeted metabolic platform to 
measure approximately 700 metabolites, allowing for a more 
detailed characterization of the metabolomic differences 
between castrated males and intact gilts. The results indicated 
that these 2 groups of pigs have similar metabolomic profiles 
at the end of their productive life, with a few peculiar dif-
ferences that could be valuable in describing their metabolic 
fingerprinting.

Material and Methods
Animal ethics
All animals used in this study were kept in compliance with 
Italian and European legislation regarding pig husbandry. The 
procedures described were in accordance with Italian and 
European Union regulations for animal care and slaughter. 
The pigs were slaughtered in a commercial abattoir following 
standard procedures. The pigs were not raised or treated in 
any way for the purpose of this study, so no additional ethical 
statement is necessary.

Animals and blood collection
The metabolomic study was conducted on 694 Italian Large 
White pigs consisting of 466 intact gilts and 228 castrated 
males, which were slaughtered over 23 different days. These 

pigs were part of the Italian sib-testing program for the 
Italian Large White pig population. The program involved 
triplets of pigs from the same litter, which included 2 intact 
females and 1 castrated male. Each pig was individually  
performance-tested at the Central Station of the National Pig 
Breeder Association. The testing period lasted from 30 to 45 
d of age to approximately 9 mo of age, until they reached a 
final live weight of 155 ± 5 kg. Throughout the testing period, 
all pigs were fed the same growing and finishing diets and 
were handled in a consistent manner. At the conclusion of the 
testing period, the pigs underwent a fasting period of approx-
imately 12 h, were then transported to a commercial abattoir, 
and were slaughtered after electrical stunning in the morning 
at around 0800h.

Blood was collected into 50 ml tubes containing ethylene-
diaminetetraacetic acid (EDTA) from the draining carotid 
artery immediately after jugulation and exsanguination. The 
tubes were inverted 8 to 10 times and then centrifuged within 
2 h at 2,420 × g for 10 min at 4 °C. Plasma samples were then 
divided into several aliquots and stored at −80 °C till subse-
quent analyses (Bovo et al., 2015).

Metabolomics of plasma samples
Plasma samples were analyzed at Metabolon, Inc. (Durham, 
NC, USA) using untargeted metabolomics (the HD4 metab-
olomics panel). A methanol extraction protocol was used 
to precipitate proteins, dissociate small molecules bound 
to proteins, and recover metabolites. The resulting extract 
underwent various ultra-performance liquid chromatog-
raphy–tandem mass spectrometry (UPLC-MS/MS) steps, 
including reverse phase (RP)/UPLC-MS/MS with positive 
ion mode electrospray ionization (ESI), RP/UPLC-MS/MS 
with negative ion mode ESI and Hydrophilic Interaction Liq-
uid Chromatography (HILIC)/UPLC-MS/MS with negative 
ion mode ESI. Three types of controls (QC) were analyzed 
alongside the experimental samples: 1) a pooled sample gen-
erated from a small portion of each experimental sample, 2) 
extracted water samples, and 3) a cocktail of standards spiked 
into every analyzed sample. Raw data was extracted, peaks 
were identified, and QC was processed using Metabolon’s 
hardware and software. For each metabolite, the raw peak 
areas were divided by the median raw peak area of the QC 
samples. Details regarding the instruments used and the sam-
ple and data processing procedures carried out by Metabolon 
are provided in Text S1. Metabolite annotations, including 
chemical names, database identifiers (HMDB and KEGG), 
and biological super-pathways and sub-pathways, were pro-
vided by Metabolon as part of their standard annotation pro-
cedure.

A total of 731 metabolites were identified, including 662 
named and 69 unnamed metabolites belonging to different 
metabolite classes encompassing 7 metabolic super-pathways: 
lipids, amino acids, nucleotides, peptides, carbohydrates, 
cofactors and vitamins, energy, and partially characterized 
molecules (Table S1). Unnamed metabolites are those that 
have been detected and measured, but their chemical identity 
has not yet been elucidated. Metabolites from the xenobiotic 
class were not included in the subsequent analyses.

Data cleaning and imputation
Data was quality-checked and filtered as outlined in a previ-
ous work (Bovo et al., 2015). Briefly, outliers were identified 
for each metabolite, removed and marked as missing data 
(NA, i.e. not available) if abundances deviated more than 

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article/doi/10.1093/jas/skaf178/8142364 by guest on 08 O

ctober 2025



4 Journal of Animal Science, 2025, Vol. 103 

5 times the interquartile range below or above the median 
for the metabolite under evaluation. A metabolite was then 
removed from the dataset if it had more than 25% of NAs. 
A sample was removed from the dataset if it had more than 
30% of NAs across the entire metabolomic profile.

The procedure described by Faquih et al. (2020), based on 
the multivariate imputation by chained equations (MICE) 
approach (Azur et al., 2011), was adopted in our data anal-
ysis pipeline to impute NAs (Fig. 1A). For each metabolite 
presenting NAs (target variable), the 10 most highly cor-
related endogenous metabolites (based on Pearson’s cor-
relation coefficient) were selected as predictor variables for 
imputation. The imputation was then performed using the 
predictive mean matching algorithm, which is the default 
and recommended univariate imputation method used by 
MICE (Azur et al., 2011). Five different imputed datasets 
were produced as a result (IMPUTATION 1 to 5; Fig. 1A). 
Additionally, to account for the random component of the 
imputation process, we expanded the procedure by using 5 
different random state seeds (SEED 1 to 5; Fig. 1A) resulting 
in a total of 25 imputed datasets. Confounding factors were 
then removed by regressing each metabolite on covariates 
(fixed effect), that are the animal weight and sampling day, as 
previously described by Bovo et al. (2015). Briefly, the model 
was yi = β0 + βwwi +

∑J−1
j=1 βCjdij + ξi, where yi denotes 

the metabolite concentration for the ith animal, β0 denotes 
the intercept term, wi indicates the weight of the ith animal, 
di1, …, di(J−1) is a set of J = 23 dummy variables coding the 
blood collection date for the ith animal, βw and βCj are the 
corresponding regression coefficients and ξi is the error term. 
Residuals were then obtained and used in data analysis. Anal-
yses were conducted in the R v.4.2.3 (R Core Team, 2024) 
and Python v3.11.7 environments.

Identification of sex-influenced metabolites in pigs
The Boruta algorithm (Kursa et al., 2010), which is a wrap-
per for the random forest (RF) classification algorithm, was 
used to identify sex-influenced metabolites. Boruta was imple-
mented in Python v3.11.7, utilizing the BORUTA_py and 
scikit_learn (Pedregosa et al., 2011) packages with default 
parameters, except for the max_iter parameter, which was 
increased to 1,000 (default: 100), and the alpha parameter, 
which was set to a more stringent value of 0.01 (default: 0.05) 
to ensure more robust statistics. To address the imbalance in 
class sample size, the RF model was initiated with the “bal-
anced” class weight option. This means that the weight of the 
input data was adjusted to be inversely proportional to class 
frequency. Only metabolites labeled as “confirmed” by Boruta 
were considered relevant for classification.

Each of the 25 imputed datasets underwent a Boruta anal-
ysis. Additionally, to address the random nature of feature 
selection, 5 different random seeds were used in the analysis 
(Boruta SEED 1 to 5; Fig. 1A), resulting in a total of 125 
Boruta runs as part of the data analysis pipeline (Fig. 1A). 
The stability of the selection of discriminant metabolites and 
the potential impact of the dataset sample composition on 
the feature selection were assessed by incorporating a 10-fold 
cross-validation (CV) procedure into the data analysis pipe-
line. Briefly, from each of the 25 imputed datasets, the CV pro-
cess iteratively cycled through all 10-folds: in each iteration, 
one-tenth of the samples was excluded, and 5 Boruta runs 
with different random seeds were applied to the remaining  
nine-tenths. This process resulted in 25 × 5 × 10 = 1,250 addi-

tional Boruta runs (External 10CV; Fig. 1A). Based on the 
produced outputs, we defined 1) a first reduced informative 
metabolite set as the 1 containing metabolites consistently 
confirmed across the 125 runs, and 2) a second reduced infor-
mative metabolite set, indicated as the core metabolite set, 
consisting only of metabolites that were confirmed across all 
1,250 runs. The data were analyzed both before and after 
metabolite selection using principal component analysis 
(PCA) (Fig. 1B, step 1) in the R v.4.2.3 environment(R Core 
Team, 2024).

Following the study by Schiavo et al. (2024), the Boruta 
approach was combined with a standard RF analysis to deter-
mine the classification performance of reduced informative 
metabolite sets (Fig. 1B, step 1). This allowed for the esti-
mation of the out-of-bag (OOB) score and error to evaluate 
the prediction performance of Boruta and assess the ability 
of selected metabolites to accurately assign each animal to 
its sex. This metric provides a computationally convenient 
approach to evaluate the RF without the need for a testing 
dataset or CV procedures (Huang and Deng, 2021). Then, to 
score the importance of metabolites and rank them accord-
ingly, we calculated the mean decrease Gini (MDG) index for 
each metabolite. The RF analyses were conducted in R v.4.2.3 
(R Core Team, 2024) using the package “randomForest”.

The predictive ability of each metabolite was further eval-
uated through receiver operating characteristic (ROC) curve 
analysis (Fig. 1B, step 1), where the area under the curve 
(AUC) value was obtained as a summary metric of the ROC 
curve. These analyses were performed in R v.4.2.3 (R Core 
Team, 2024) using the package pROC.

Differences in metabolite abundance between sexes were 
tested for each metabolite using a univariate approach via a 
Mann–Whitney U test (Fig. 1B, step 1), as implemented in 
R v.4.2.3 (R Core Team, 2024). Metabolites that showed a 
Bonferroni-corrected P < 0.05 were considered statistically 
significant.

The relative difference in metabolite concentration [Δ%, 
(Bovo et al., 2016); Fig. 1B, step 1] between sexes was also 

calculated and expressed as ∆%i =
x̄Mi −x̄Fi
x̄Mi

× 100, where x̄Mi  

and x̄Fi  are the average metabolite abundance of the ith 
metabolite in castrated males and intact gilts, respectively.

Functional analysis of sex-influenced metabolites
Annotations provided by Metabolon were used to initially 
evaluate the biological functions of selected metabolites 
(Fig. 1B, step 2). A network based on Pearson’s correlation 
coefficients (r) was then constructed to examine the relation-
ships among the selected metabolites (Fig. 1B, step 3). Cor-
relation coefficients were calculated at both the population 
level (including sex as a fixed effect in the regression model 
used for data cleaning) and for each sex separately. The stron-
gest coefficient among the 3 was included in the network if 
|r| ≥ 0.5 (indicating a medium correlation). The network was 
visualized with Cytoscape 3.0.1 (Shannon, 2003), and basic 
statistics, such as node degree and betweenness centrality, 
were calculated. The network was also annotated with the 
biological information from Metabolon and metabolite fea-
tures obtained during the selection process.

Biological pathways were further analyzed through 
over-representation analysis (Fig. 1B, step 4), using Metabo-
Analyst v.6.0 (Pang et al., 2022). The RaMP-DB resource, 
which contains a comprehensive collection of 3694 metabolic 
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Figure 1. Metabolomic data analyses. A) Data analysis pipeline used for the identification of sex-influenced metabolites. It includes the use of 5 
different random seeds in the imputation step (each generating 5 alternative datasets) for a total of 25 imputed datasets. Each dataset is then analyzed 
with Boruta with 5 different random seeds, for a total of 125 runs. Metabolites commonly selected across the 125 runs are retained representing 
the “selection set”. Each run is subsequently subjected to a 10CV procedure, for a total of 1,250 Boruta runs. Metabolites commonly selected across 
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and lipid pathways (metabolite sets) from different databases 
[i.e., Reactome, WikiPathways, and KEGG (Zhang, 2018)] 
was interrogated. Metabolite identifiers from the Human 
Metabolome Database (HMDB) were used as the input set. 
Metabolite sets were considered over-represented if they had 
a false discovery rate (FDR) corrected P < 0.05 and included 
at least 2 metabolites from the input set.

Comparative analysis and pipeline evaluation 
across metabolomic platforms
Pigs included in this study have also been previously analyzed 
with the targeted metabolomic Biocrates AbsoluteIDQ p180 
kit (Biocrates Life Sciences AG, Innsbruck, Austria), which 
provided semiquantitative measurements for approximately 
180 metabolites from 7 biochemical families [amino acids, 
biogenic amines, hexoses, acylcarnitines, sphingomyelins, 
phosphatidylcholines and lysophosphatidylcholines; (Bovo 
et al., 2015)]. Using targeted metabolomics data produced 
with this platform, Bovo et al. (2015) identified metabo-
lite sex-related differences by applying a sparse partial least 
square discriminant analysis (sPLS-DA) approach. There is a 
partial overlap in terms of metabolites between the Biocrates 
and Metabolon platforms: based on filtered data, 54 metab-
olites (40%) of the metabolites of the Biocrates platform are 
also in the Metabolon panels (Table S2). Correlation coef-
ficients between abundances obtained with the 2 platforms 
were moderately high (r > 0.6) for 87% of these metabolites. 
Additionally, the output of the 2 platforms is expressed in 
different ways. Therefore, here we addressed the comparisons 
between the results of the 2 platforms in terms of general 
outputs based on different statistical approaches. To obtain 
a proper comparison between the previous results obtained 
with the Biocrates platform and the results obtained here 
using the Metabolon platform, we used the following data 
analysis pipelines and algorithms (Fig. 1C): 1) the previously 
obtained Biocrates data were analyzed with the approaches 
implemented in this study, 2) that merged the method imple-
mented in the previous study with the novel methodology 
developed in this study, and 3) that applied the statistical 
approach used in the previous work with the data produced 
in the current study:

1)	We applied the Boruta algorithm to the results obtained 
with the Biocrates platform. This dataset included 132 
metabolites after the quality check and filtering steps that 
were regressed to obtain residuals (Bovo et al., 2015). 
Five Boruta runs (as 5 random seeds were tested) for each 
of the 10CV procedures were launched, for a total of 50 
Boruta runs (Fig. 1C; point 1).

2)	We applied to both the Metabolon and Biocrates metab-
olomics panels the statistical approach here described, 
by replacing the Boruta algorithm with the sPLS-DA 
algorithm. However, as the sPLS-DA algorithm reports a 
regression coefficient (β) for each selected metabolite, we 

marked as confirmed only those metabolites that had an 
identical sign of β over the 125 runs. Similarly, the sign 
of β was also considered when evaluating the stability of 
the selection over the 1,250 runs (Fig. 1C; point 2).

3)	We applied to the Metabolon panel our previously devel-
oped sPLS-DA statistical approach (Bovo et al., 2015), 
relying on a single run of sPLS-DA to select metabolite 
features, followed by permutation tests to evaluate their 
P at the stability and significance of the selection tests 
(Bovo et al., 2015) (Fig. 1C; point 3).

Results
Description of the plasma metabolomic profile in 
the Italian Large White population
Using the Metabolon platform, we obtained as raw data the 
relative quantification and identification of 731 metabolites: 
1) 602 molecules (82%) were of endogenous origin, 2) 60 
molecules (8%) were of xenobiotic origin, and 3) 69 molecules 
(9%), referred to as unnamed metabolites, had unknown ori-
gins. Endogenous metabolites encompassed various metabo-
lisms, including 8 super-pathways (Metabolon): lipids (49% 
of the endogenous set), amino acids (29%), nucleotides (7%), 
peptides (4%), carbohydrates (4%), cofactors and vitamins 
(4%), energy (1%), and partially characterized molecules 
(1%). In total, the metabolites covered 98 sub-pathways 
(Metabolon; Table S1). Fig. 2A and B shows the distributions 
of metabolites across super-pathways and sub-pathways. 
Metabolites of xenobiotic origin were excluded from further 
analyses.

After the data cleaning procedures, 65 metabolites were dis-
carded due to having more than 25% of missing data, while 
all samples were retained. This did not affect the proportions 
among the different super-pathways and sub-pathways (Table 
S1). The final dataset used for subsequent analyses included 
all animals (No. 694) and 606 metabolites covering the 8 
super-pathways indicated above.

Identification of metabolites differentiating 
castrated males and intact gilts
A PCA was initially conducted on the final metabolomic 
dataset to identify differences between the 2 sexes. The first 2 
principal components (PC) explained 24% of the total vari-
ance (PC1 = 16% and PC2 = 8%), with no distinct clusters 
emerging; the clouds constituted by the pigs of the 2 sexes 
completely overlapped (Fig. 2C).

To identify sex-influenced metabolites, a data analysis pipe-
line was utilized, which first involved 125 runs of the Boruta 
algorithm to account for the influence of random state seed 
during data imputation and feature selection (5 random state 
seeds were used in the data imputation phase × 5 imputed 
datasets by MICE × 5 random state seeds were tested with 
Boruta). In total, 57 metabolites were selected (ranging from 
47 to 56 in individual runs, with an average of 51; Fig. 2D), 

the 1,250 runs are retained representing the stably selected metabolite set, here define as “core set”. B) Methodological and biological evaluation of 
selected metabolites. This evaluation is characterized by 4 steps that define discriminative power and statistics that characterize selected metabolites, 
their biological features and functions, relationships and biological pathways. C) Comparative analysis and pipeline evaluation applied across 
metabolomic platforms (Metabolon and Biocrates datasets). It includes 3 other blocks of analysis: 1) a novel pipeline based on Boruta applied to the 
Biocrates dataset, 2) a novel pipeline replacing Boruta with sPLS-DA applied to both Metabolon and Biocrates datasets, and 3) a previously applied 
pipeline (old) based on sPLS-DA used to analyze the Metabolon dataset. Abbreviations: AUC, area under the curve; CV, cross-validation, MDG, mean 
decrease Gini; MICE, multivariate imputation by chained equations approach; OOB: out-of-bag; PCA, principal component analysis; ROC, receiver 
operating characteristic; RF, random forest; sPLS-DA, sparse partial least squares discriminant analysis.
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but only 40 metabolites (Table 1) were consistently identified 
in all 125 runs. To assess the stability of selection, an external 
10-fold CV procedure was performed, increasing the number 
of Boruta runs to 1,250. Out of these, 15 metabolites (rang-
ing from 21 to 26 metabolites in the individual runs, with an 
average of 23; Fig. 2D) were consistently selected across all 
1,250 runs, forming a core set of metabolites indicative of dif-
ferences between castrated males and intact gilts. The remain-
ing 25 metabolites were confirmed in 58.5% to 99.8% of the 
1,250 runs (with an average confirmation rate of 80.2 ± 14.7). 
These results indicated that while feature selection was stable, 
feature confirmation was less consistent when evaluating this 
specific condition (namely castrated males versus intact gilts). 
Among the 40 selected metabolites, 60% (24/40) had higher 
concentrations in castrated males while in the core metabolite 
set, this percentage increased to 80% (12/15).

The discriminative power of selected metabolites was eval-
uated using different indices: 1) the OOB score (number of 
correctly predicted data), which gives an overall estimation of 
the prediction error and 2) the MDG and AUC values, which 
provide relevance and power at the single metabolite level. 
Additionally, the results of a Mann–Whitney U test (univariate  
statistics) were also evaluated. When considering the set 

of 40 metabolites, the OOB score was found to be 0.75 
(OOB error = 0.25). The MDG index was calculated to be 
0.024 ± 0.007 (min = 0.016; max = 0.060), while the AUC 
was determined to be 0.62 ± 0.04 (min = 0.54; max = 0.70). 
Homocitrulline, an amino acid belonging to the urea cycle 
and arginine and proline metabolism, emerged as the metab-
olite with the highest importance and discriminating power 
(MDG = 0.06; AUC = 0.70).

The correlation between MDG and AUC values was mod-
erate (r = 0.55). At the Mann–Whitney U test, 70% of metab-
olites (No. 28) significantly differed (Bonferroni-corrected 
P < 0.05; Table 1). A relationship between AUC and Mann–
Whitney U-statistic (P) was also identified (Fig. S1), as pre-
viously shown by Mason & Graham (Mason and Graham, 
2002). PCA based on this set of metabolites did not show 2 
clearly separated clusters (Fig. 2E).

Core metabolites had similar but lower OOB scores, equal 
to 0.73 (OOB error = 0.27). The MDG index and AUC values 
had higher average values of 0.030 ± 0.009 and 0.65 ± 0.03, 
respectively. Only 2 core metabolites did not pass the Mann–
Whitney U test. Overall, statistically significant differences 
(P < 0.05) in MDG and AUC values were observed between 
the 15 core metabolites and the remaining 25, indicating that 

Figure 2. Metabolomics profile and sex-influenced metabolites. (A) Distribution of the analyzed metabolites across super-pathways; statistics are 
presented before and after data filtering. (B) Sub-pathways linked to the metabolomic profile as stratified by across super-pathways; statistics are 
presented before and after data filtering. (C) PCA before feature selection (No. 606 metabolites). (D) Statistics of selection (Boruta SEED 1 to 5); 
percentage relates to the entire filtered metabolite set (No. 606 metabolites). (E) PCA based on selected metabolites (No. 40). (F) PCA based on stably 
selected metabolites (core metabolite set; No. 15). Abbreviations: Part. char. molecules, partially characterized molecules; PCA, principal component 
analysis; PC, principal component.
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stable metabolites were generally better for classification. 
PCAs based on the core metabolite set did not show 2 clearly 
separated clusters. However, the percentage of explained vari-
ance based on the first 2 PCs reached 43% when considering 
the core metabolite set (Fig. 2F).

Biological properties of discriminant metabolites
The 40 selected metabolites encompassed various super-
pathways (Fig. 3A) and were distributed as follows: amino 
acids (No. 22) accounted for 55%, followed by lipids (No. 7; 
17.5%), carbohydrates (No. 2; 5%), cofactors and vitamins 
(No. 2; 5%), nucleotides (No. 2; 5%), and peptides (No. 1; 
2.5%). Unnamed molecules (No. 4) accounted for 10% and 
no metabolites from the energy super-pathway were selected. 
Core metabolites had a similar distribution across the same 
super-pathways (Fig. 3A).

When stratified by sex, 62% of the whole set of selected 
metabolites had higher concentrations in castrated males. 
More than half of amino acids (57%) and lipids (63%) had 
higher concentrations in castrated males. Cofactors and vita-
mins and carbohydrates were assigned to castrated males in 
terms of higher concentration, while nucleotides and peptides 
were assigned to intact gilts.

Based on the Δ% (Table 1), absolute values ranged from 
3.7 (threonine) to 34.4 (1-methyl-5-imidazoleacetate), with 
an average value of 13.6 ± 6.7. When considering the |Δ|% 
values of core metabolites, the minimum was 10.9 (N- 
acetylarginine) and an average value of 19.0 ± 6.4 was 
obtained. We observed medium correlations between |Δ|% 
and AUC (r = 0.60; Fig. 3B), |Δ|% and the Mann–Whitney U 
-statistic (r = 0.58; Fig. 3C) and |Δ|% and MDG (r = 0.53; Fig. 
3D). A total of 6 metabolites had a |Δ|% > 20. These metab-
olites were 1) more abundant in castrated males (5 out of 
6) except for the dipeptide leucylhydroxyproline, 2) mainly 
included amino acids (4 out of 6), with most of them (3 out 
of 4; 4-imidazoleacetate, 1-ribosyl-imidazoleacetate and 
1-methyl-5-imidazoleacetate) belonging to histidine metab-
olism. Except for 4-imidazoleacetate, all these metabolites 
were included in the core metabolite set.

Functional characterization of discriminant 
metabolites
Based on Metabolon annotations, discriminant metabolites 
were mapped onto 26 sub-pathways (Metabolon). In partic-
ular, the 3 most populated ones (with at least 3 molecules 
each per sub-pathway) were 1) histidine metabolism (5 mol-

ecules), 2) urea cycle/arginine and proline metabolism (5 
metabolites), and 3) glycine, serine and threonine metabolism 
(3 metabolites). Most of the other sub-pathways included 2 
metabolites each. The 5 less populated sub-pathways were 
1) polyamine metabolism, tryptophan metabolism, and tyro-
sine metabolism, which are all components of the amino 
acid super-pathway, 2) sterol metabolism, part of the lipids 
super-pathway, and 3) ascorbate and aldarate metabolism, 
within the cofactors and vitamins super-pathway. It is worth 
mentioning that all the metabolites of the urea cycle/arginine 
and proline metabolism and 3 out of 5 metabolites of the his-
tidine metabolism, were listed within the core metabolite set.

Biological pathways were also studied through over-
representation analysis. A total of 31 metabolites had a 
HMDB identifier and 29 of them were successfully mapped 
to the pathway libraries and metabolite sets available in 
MetaboAnalyst v.5.0. Only 2 functional sets showed an 
FDR-corrected P < 0.05. The most statistically significant set 
(P = 0.004) was related to biomarkers for urea cycle disor-
ders (WikiPathways: WP4583), and annotated 4 metabolites 
from the input set, strengthening the characterization based 
on Metabolon information. However, it is worth noting that 
the annotation sets from Metabolon and WikiPathways did 
not completely overlap, with only urea and homocitrulline 
shared between the 2 annotation sets. The WikiPathways set 
also included L-threonine and 3-aminoisobutyrate. The sec-
ond set (P = 0.0246) was the general set “biochemical path-
ways: part I” (WikiPathways: WP3604), annotating 9 of the 
selected metabolites.

Metabolite correlation network
Discriminant metabolites were studied in the context of their 
relationships through the generation of a correlation net-
work, retaining only moderate to high correlations (|r| > 0.5) 
from 3 correlation sets (r at the entire population, castrated 
male, and intact gilts levels). In this network (Fig. 4A), more 
than half of the selected metabolites (23 out of 40) were con-
nected to each other, totaling 31 edges. Four connected com-
ponents emerged, including a large cluster of 14 metabolites, 
a medium cluster of 5 metabolites, and 2 small clusters, each 
containing 2 metabolites (Fig. 4A). Nine of these metabolites 
were included in the core metabolite set (Fig. 4A, red star 
symbol).

Metabolite clusters were evaluated in relation to biological 
and non-biological features. The large and medium clusters con-
sisted of molecules from different super-pathways (Metabolon),  

Figure 3. Biological features and direction of plasma concentration for the 40 selected metabolites. (A) Distribution of metabolites across super-
pathways; data are presented for the whole population (POP; No. 40 metabolites) and stratified by sex [No. 15 metabolites with higher abundance in 
intact gilts (Female ↑) and the remaining No. 25 metabolites with higher abundance in castrated male (Male ↑)]. (B) Relationship between |Δ|% and AUC 
statistics. (C) Relationship between |Δ|% and Mann–Whitney U-statistic (P). (D) Relationship between |Δ|% and MDG statistics.
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highlighting several interclass links. These 2 clusters included 
most of the metabolites with the highest discriminative power 
(AUC and MDG; Fig. 4B and C, respectively) and the first 
2 highest correlation coefficients. The strongest correlation 
at the population level (r = 0.79) was observed between 
kynurenate (node No. 16) and the unnamed metabolite 
X-15503 (node No. 11) within the medium size cluster. Stud-
ies in humans have associated these 2 metabolites with the 
kynurenine 3-monooxygenase (KMO) and kynureninase 
(KYNU) genes (Surendran et al., 2022; Chen et al., 2023), 
which encode 2 enzymes of the kynurenine pathway, func-
tionally supporting the link between these 2 molecules. The 
second strongest correlation at the population level (r = 0.62) 
was observed between homocitrulline (node No. 1) and the 
unnamed metabolite X-23593 (node No. 3), within the larger 
cluster. A study in humans (Schlosser et al., 2020) associated 
the N-Acetyltransferase 8 (Putative) (NAT8) and ALMS1 
Centrosome And Basal Body Associated Protein (ALMS1) 
genes with both metabolites, functionally linking them. More-
over, homocitrulline was also linked to the unnamed com-
pound X-24736 (r = 0.58), and the same study, by Schlosser 
et al. (2020), associated both metabolites with the Solute Car-
rier Family 7 Member 9 (SLC7A9) gene. The third strongest 
correlation at the population level (r = 0.62) was observed 
between the unnamed metabolite X-23593 (node No. 3) and 
1-methyl-5-imidazolelactate (node No. 4). The 2 small clus-
ters were more specific to the metabolite class, with 1 related 

to lipids and the other to amino acids but containing metabo-
lites with generally lower discriminative power.

By annotating the network (Fig. 4) with sub-pathway infor-
mation (Metabolon), we observed the following connections: 
1) 3 out 5 metabolites belonged to the histidine metabolites 
and were linked to each other (nodes Nos. 4, 6, 17), 2) 2 out 
of 4 metabolites belonged to the urea cycle / arginine and pro-
line metabolism and were linked to each other (nodes Nos. 
1 and 7), 3) 2 out of 3 metabolites belonged to the glycine, 
serine, and threonine metabolism and formed 1 of the 2 small 
clusters (nodes Nos. 30 and 38), and 4) 2 metabolites of the 
ascorbate and aldarate metabolism were directly connected 
(nodes Nos. 2 and 18).

When studying network properties, including the average 
shortest path, node degree, and centrality (Table 1), relevant 
no significant relationships between node features and metab-
olite importance (MDG), AUC, or |Δ|% were observed. How-
ever, it was noted that relevant metabolites tend to form links 
with each other (Fig. 4B and C).

Comparative analyses across metabolomic 
platforms and data analysis pipelines
In our previous work (Bovo et al., 2015), 85 out of the 132 
(64.4%) metabolites of the Biocrates panel were identified as 
sex-influenced by applying a data analysis pipeline relying on 
the sPLS-DA algorithm and considering 2 indices (i.e., the P of 
stability and the P of significance; Table S3) that were derived 

Figure 4. Correlation network obtained from selected metabolites (No. 40). Only connected components, involving No. 23 metabolites, are presented. 
Node identifiers are provided (details in Table 1). Shape of nodes refers to the metabolite abundance, higher either in castrated males (squared box) 
or in intact gilts (circle). Core metabolites are indicated with a star (*) symbol. (A) Metabolites are colored by super-pathway (annotations provided by 
Metabolon). (B) Metabolites are colored based on the AUC value from receiver operating characteristic analysis. (C) Metabolites are colored based on 
the MDG value.
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to evaluate the goodness of the selection. Considering the 
large difference between the Biocrates and Metabolon metab-
olomic panels, to obtain an integrated even general overview 
of sex-influenced metabolites, we carried out some additional 
tests (Fig. 1C). 1) We re-analyzed the Biocrates data with the 
novel pipeline (Boruta) developed here for the Metabolon 
data. 2) Because of previous analyses of this dataset relied on 
the sPLS-DA algorithm (Bovo et al., 2015), sPLS-DA was also 
integrated and tested in the current pipeline as a replacement 
of the Boruta algorithm and this approach was used to re-
analyze both Biocrates and Metabolon datasets. 3) We finally 
run the previously used pipeline based on a simple sPLS-DA 
(Bovo et al., 2015) to re-analyze the Metabolon dataset.

1) In the analysis of the Biocrates panel (Table S3), the 
novel Boruta pipeline led to select a total of 14 metabolites 
(from 8 to 10 metabolites/seed; Fig. 5A), with 6 of them (C3, 
kynurenine, PC aa C40:6, PC ae C36:1, PC ae C36:5, and 
serotonin) shared among the 5 tested random seeds. Four 
metabolites (C3, PC aa C40:6, PC ae C36:5, and serotonin) 
were confirmed across the 50 Boruta runs that included the 
10CV procedure (core set), all of them overlapping the 85 
biomarkers initially discovered. As previously described, also 
in this case the results obtained highlighted how our pipeline, 
when relying on Boruta, stably selects the most relevant fea-
tures and counteracts random effects (Fig. 5A). Considering 
the AUC (Table S3), values were in the ranges 0.54 to 0.62, 
0.59 to 0.62, and 0.59 to 0.62 for the selected, shared and 
confirmed metabolite sets. 2) When Boruta was replaced with 
sPLS-DA (Table S3), selection resulted instable: from 39 to 
129 metabolites/seed (Fig. 5A), for a total of 129 metabolites 
(>97%) selected at least by 1 seed and 39 in common to all the 
5 seeds. However, only 34 of them had a stable direction of 
the β coefficient and 11 of these metabolites (His, Kynurenine, 
Met-SO, PC aa C32:2, PC ae C36:5, PC ae C44:6, SM (OH) 
C16:1, SM C18:1, Ser, Serotonin and Taurine), representing 
the core set, were confirmed across the 50 Boruta runs and 
overlapped the 85 biomarkers previously discovered (Bovo et 
al., 2015). In this case, AUC were in the ranges 0.46 to 0.62, 
0.46 to 0.62, and 0.56 to 0.60 for the selected, shared and 
confirmed metabolite sets. Considering the 2 core sets, only 
2 molecules (Serotonin and PC ae C36:5; AUC equal to 0.59 
and 0.60, respectively) were common to both.

Considering the Metabolon panel, replacement of Boruta 
with sPLS-DA in the pipeline resulted in selecting almost the 

whole profile for each tested random seed and almost half 
of the profile was then confirmed for each random seed (Fig. 
4B). A total of 374 metabolites were always selected across 
the 125 runs and 16 metabolites resulted lastly confirmed 
across all the 1,250 runs (with also a stable direction of the 
β coefficient), representing the core set. The AUC for these 2 
sets were in the range 0.47 to 0.71 for both.

The application of our previously developed statistical 
approach to the Metabolon dataset led to obtaining 445 
metabolites with P of stability < 0.05 and 337 metabolites 
with P of significance < 0.05. Considering both indices simul-
taneously, 296 metabolites could be marked as sex influenced. 
The AUC values for these 2 sets were in the range 0.47 to 
0.71. Summarizing the results obtained with different statis-
tics reported in the analysis of Metabolon dataset, wide differ-
ences emerged between the adopted algorithms and pipelines. 
In fact, the number of selected metabolites progressively 
increased passing from 40 (novel pipeline: based on Boruta 
125 runs) to 374 (novel pipeline: based on sPLS-DA 125 runs 
and with stable β direction) and 445 (previously applied pipe-
line: sPLS-DA with both P < 0.05). Fig. 5C shows the over-
lap between the different selected sets and highlights that 1) 
almost all metabolites captured by Boruta are also captured 
by the sPLS-DA approaches and 2) the previous implemen-
tation of sPLS-DA captures more metabolites than the novel 
one. Similarly, we evaluated the core sets: we moved from 
15 metabolites (novel pipeline; 1,250 runs of Boruta), to 16 
(novel pipeline; 1,250 runs of sPLS-DA and stable β direction) 
and 296 (old pipeline, sPLS-DA with P < 0.05), with most of 
the metabolite captured by Boruta that are captured also by 
the sPLS-DA approaches (Fig. 5D).

Discussion
In this study, we investigated sex-related differences in pig 
metabolism using a high-throughput untargeted plasma 
metabolomic approach. To date, only a few studies in pigs 
(Bovo et al., 2015; Dervishi et al., 2021; Peukert et al., 
2021;  Ponsuksili et al., 2022) have evaluated sexual dimor-
phisms at the metabolome and metabolism levels. Our 
study has unique characteristics that set it apart from pre-
vious investigations. Firstly, we evaluated a large cohort of  
performance-tested animals from the Italian Large White 
breed, ensuring sufficient statistical power to detect differences  

Figure 5. Comparative analyses across metabolomic platforms and data analysis pipelines. (A) Analysis of the Biocrates dataset. The novel developed 
pipeline tested both Boruta and sparse sPLS-DA as feature selection algorithms. (B) Analysis of the Metabolon dataset by using the developed pipeline 
with sPLS-DA as feature selection algorithm (Boruta SEED 1 to 5). (C) Analysis of the Metabolon dataset: overlap between selected metabolites coming 
from the different data analysis pipelines. (D) Analysis of the Metabolon dataset: overlap between selected metabolites populating the “core sets”.

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article/doi/10.1093/jas/skaf178/8142364 by guest on 08 O

ctober 2025



Bovo et al. 13

between the 2 groups of pigs, despite a slight imbalance due 
to the number of intact gilts being roughly twice that of the 
castrated males. Secondly, our pig population consisted of 
either castrated males or intact gilts, allowing us to explore 
the sex-related architecture of metabolism resulting from a 
combination of 2 major components: 1) genetics, determined 
by the combinations of the sex chromosomes X and Y; 2) cas-
tration of males, which alters the biologically planned struc-
ture of the metabolism as determined by the chromosomal 
structures of the 2 groups of pigs (males: XY; and females: 
XX). Thirdly, although our study was initially focused on 
the common practice of male castration, the opportunity 
to evaluate these 2 groups of pigs enabled us to study the 
effects of hormone deficiency syndromes. This research has 
the potential to uncover new avenues in translational biomed-
ical sciences and further establish the pig as a valuable model 
organism.

Castration of male pigs is commonly done to prevent 
boar taint in meat derived from sexually mature males (5 to 
6 mo old) (De Briyne et al., 2016; CASTRUM consortium, 
2017; Mateos et al., 2024). This practice lowers levels of 2 
key hormones that cause boar taint: androsterone and ska-
tole (Zamaratskaia and Squires, 2009). Male castration is 
crucial for the Italian pig production system, which special-
izes in producing heavy pigs that are slaughtered at approx-
imately 170 kg of live weight when animals have reached at 
least 9 mo of age to produce protected designation of ori-
gin hams [such as Parma and San Daniele hams; (Bosi and 
Russo, 2004)]. However, despite the effect of male castration 
at the hormonal level (at least on skatole and androstenone) 
has been the matter of many studies, little is known about its 
global effect on molecular and metabolic architecture.

In addressing the identification of sex-influenced metabo-
lites (which differentiate castrated males and intact gilts), we 
utilized Boruta, a RF wrapper. We chose this machine learning 
algorithm because it has been recognized as a solution for 
the all-relevant problems of feature selection, allowing for the 
identification of the full set of features that contain informa-
tion usable for prediction, rather than just the minimal set of 
metabolites needed to create a predictive model (Kursa et al., 
2010). In our previous study (Bovo et al., 2015), we obtained 
a preliminary analysis of sex-metabolome differences in the 
same pig population using a different metabolomic platform 
(Biocrates) and a different statistical approach (sPLS-DA). In 
the current study, we conducted several additional robust sta-
tistical tests to align the results from our previous study with 
the results obtained now with the Metabolon platform.

Following the evaluation of 606 metabolites on the Metab-
olon platform, encompassing 93 different metabolic path-
ways, we identified a total of 40 metabolites that differentiate 
between castrated males and intact gilts using Boruta. This 
set of metabolites proved to be highly reliable, as the data 
analysis pipeline we utilized was specifically designed to 
address the issue of randomness inherent in algorithms and 
procedures. The identified metabolites exhibited moderate 
to high discriminative power, with AUC values that correctly 
classified the sex of the pigs for 75% of the population (OOB 
score). However, these metabolites were not able to com-
pletely separate the 2 groups, as shown in the PCA analyses 
(Fig. 2E and F), even when a more robust set of 15 discrimi-
native metabolites (the core metabolite set) was utilized. This 
outcome was somewhat expected and confirmed our previ-
ous findings (Bovo et al., 2015), which discussed the limita-

tions of clusterization based on plasma metabolites detected 
by the Biocrates platform, compared to studies in humans 
(Mittelstrass et al., 2011). Despite some methodological dif-
ferences, the separation between castrated males and intact 
gilts was poor compared to what was obtained in humans 
when (intact) sexually mature males were compared to 
females (Mittelstrass et al., 2011; Costanzo et al., 2022). Cas-
tration of male animals reduces the differences with females, 
although it does not completely eliminate all metabolic differ-
ences. This finding in castrated male pigs is also supported by 
a study conducted by De Siqueira et al. (2022) who evaluated 
the plasma metabolome of castrated men, through temporary 
pharmacologically induced castration via testosterone deple-
tion. When considering non-sexually mature individuals, such 
as the infant human population (12 mo old) studied by Ellul 
et al. (2020), a certain degree of differentiation between males 
and females was observed. Similar results were also observed 
between intact male and female piglets (Peukert et al., 2021). 
Comparisons across species and studies are however difficult 
to align due to heterogeneity in the metabolomic platforms, 
experimental designs, and statistical approaches used for the 
final interpretation of the results. The inclusion of datasets 
from other pig breeds that adhere to the same design, utilize 
the same metabolomics platform, and employ a similar statis-
tical approach could offer valuable insights into the metabolic 
characteristics that are inherently associated with sex differ-
ences, as well as those that may be unique to particular breeds 
or genetic backgrounds.

To overcome some of the limitations previously mentioned, 
we worked to compare the results obtained from our previous 
study (Bovo et al., 2015) that produced metabolomic pro-
files using the Biocrates-targeted metabolomic platform from 
the same pigs analyzed here. A total of 85 metabolites from 
the Biocrates platform emerged as being sex-differentiated. 
This number was reduced to 21 when more stringent P sta-
tistics were applied. When we used the novel pipeline based 
on sPLS-DA on the same Biocrates dataset, only 11 and 5 
metabolites passed the selection, all of which were within the 
list of 85 or 21 metabolites, respectively. When Boruta was 
applied, only 6 or 2 metabolites were identified with the 5 
seed-based analyses or only 4 metabolites were identified with 
the 10CV analyses, among the lists of the 85 and 21 metab-
olites, respectively. This highlighted a quite high instability 
in the identification of relevant features if the influence of 
randomness effects is not properly controlled (Fig. 5), as also 
previously observed by Bovo et al. (2025a). However, when 
the random nature of feature selection is addressed as we did 
in our Boruta and sPLS-DA pipelines, most of the metabolites 
detected with Boruta were also detected with sPLS-DA. This 
stability in feature selection was also reported when we used 
Boruta and sPLS-DA to analyze Metabolon dataset (Fig. 5C 
and D). We cannot exclude the possibility that part of this 
instability is due to additional factors, such as the long-term 
storage of samples (10 to 12 yr at −80 °C), which may pro-
mote degradation or alteration of metabolites (Wagner-Golbs 
et al., 2019). Another factor could be platform-specific ana-
lytical methods, including differences in detection sensitiv-
ity. Therefore, multiple factors could explain the differences 
observed in platform analyses, and isolating the specific con-
tribution of storage time or platform is challenging. However, 
a correlation analysis of the abundance values of metabolites 
commonly identified by the 2 platforms showed that 87% 
of these metabolites had a strong correlation (r > 0.6). It is 
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also important to note that while the Metabolon dataset was 
generated from a limited number of analytical batches, the 
Biocrates data were acquired across multiple plates and runs, 
potentially introducing higher inter-batch variability.

Using the Boruta approach implemented here on the Metab-
olon dataset, we identified 40 sex-influenced metabolites 
(whose plasma level was different between castrated males 
and intact gilts): 16 formed a core set of stable metabolites. 
This conservative approach makes it possible to detect only 
relevant and major metabolomic features that describe the 
metabolic differences between these 2 groups of pigs. More 
than half of the 40 sex-influenced metabolites are from the 
amino-acid super-pathway. Within this class, despite the Bio-
crates and Metabolon panels presenting only a partial overlap 
in terms of screened molecules (40% of Biocrates metabolites 
are also in the Metabolon panel), serine and threonine were 
identified as sex-influenced by both panels. These 2 metab-
olites are important components of the “Glycine, Serine, 
and Threonine Metabolism” and their relationship was also 
highlighted in the reconstructed metabolite network. How-
ever, they only showed moderate discriminant power between 
sexes in both types of datasets (as in the univariate test they 
did not present a strong significant difference). Other mole-
cules from the amino-acid super-pathway, in particular the 
“Urea cycle; Arginine and Proline Metabolism” (e.g., homoc-
itrulline and urea) were more important in the discrimination 
as they had medium-high AUC values (> 0.66). Moreover, 
this metabolism included a total of 5 metabolites (N-delta-
acetylornithine, homoarginine, and N-acetylarginine, as 
selected metabolites molecules, and serine and threonine as 
reported earlier). Pathway enrichment analysis confirmed 
the importance of the urea metabolism in differentiating cas-
trated males from intact gilts. It was also interesting to note 
that the mentioned amino acid pathways are closely linked 
as 1) threonine is shared by both pathways and 2) among the 
selected metabolites, dimethylglycine (a derivative of glycine 
and member of the glycine, serine, and threonine metabo-
lism) was present. This result confirms what was reported by 
Bovo et al. (2015) who suggested that these 2 groups of pigs 
may differ in terms of amino acid metabolism and protein-
construction-related functions, which in turn, may indicate 
differences in nitrogen uptake between castrated males and 
intact gilts. The reconstructed network made it possible to 
add 2 other unnamed molecules to these pathways: metabo-
lites X-23593 and X-24736, that in the networks were linked 
to homocitrulline. In human blood, the levels of X-23593 and 
homocitrulline have been shown to be associated with vari-
ability in the NAT8 and ALMS1 genes whereas both X-24736 
and homocitrulline levels have been associated with variabil-
ity in the SLC7A9 gene (Schlosser et al., 2020).

Among the amino acids-related metabolisms, the histidine 
metabolism emerged as the second most populated one in 
terms of number of metabolites. Most of the molecules of this 
metabolism were among those having the largest difference in 
terms of abundance between the 2 groups of animals, with a 
generally higher concentration in castrated males than intact 
gilts. Among the metabolites in this amino acid metabolism, 
3-methylhistidine has been reported to have a higher concen-
tration in human plasma and urine in rats due to the effect of 
castration in males (Jiao et al., 2009; De Siqueira Guedes et 
al., 2022).

The tryptophan metabolism was another amino acid-related 
metabolism that was affected: among their metabolites, the 

higher concentration of plasma kynurenate in pigs can be also 
paired with another unnamed metabolite (X-15503). This 
link may be derived from what has been already reported 
in humans where the combination of network analysis and 
genome-wide association analysis made it possible to assign 
X-15503 to the kynurenine pathway (Surendran et al., 2022; 
Chen et al., 2023). Considering that molecules belonging to 
the KP are involved in modulating the activity of the mam-
malian immune and central nervous systems (Savitz, 2020), 
this information can be used to better understand a potential 
effect of male castration on behavior and immunological dif-
ferences between castrated males and intact gilts.

Castrated pigs have usually lower lean body mass com-
pared to intact males, which means that they may use dietary 
proteins less efficiently for muscle growth (i.e., decreased rate 
of muscle protein synthesis) that could lead to an increase in 
amino acid oxidation and nitrogen waste as a result of an 
increased release of free amino acids from muscle tissue into 
the bloodstream (Cai et al., 2010; Ruiz-Ascacibar et al., 2019; 
Fernández-Fígares et al., 2023). The higher concentration in 
castrated males for several metabolites involved in the metab-
olism of various amino acids can be explained by this process.

Other interesting profiles can be obtained from the lipid 
super-pathways where fatty acids tended to have a higher 
concentration in castrated males whereas sterols tended to 
have a higher concentration in intact gilts. Castration in pigs 
is traditionally associated with increased fat deposition. This 
has been shown in many studies across different breeds and 
production systems (D’Souza and Mullan, 2002; Gispert et 
al., 2010; Morales et al., 2011; Garitano et al., 2013; Puls et 
al., 2017). However, it is important to distinguish between 
fat accumulation and circulating lipids, as they may behave 
differently due to differences in metabolic regulation and  
tissue-specific mechanisms. Among other metabolite fami-
lies, in general nucleotides and peptides had higher concen-
trations in intact gilts whereas carbohydrates, cofactors, and 
vitamins had higher concentration in castrated males. Partic-
ularly, a few molecules of these latter classes (i.e., gulonate,  
2-O-methylascorbic acid, and arabitol/xylitol) were found 
linked together in the reconstructed network confirming 
the biological links established between these molecules 
(see KEGG maps: 00040 and 01240): 1) gulonate is a pre-
cursor of ascorbate (vitamin C), explaining the link with  
2-O-methylascorbic acid and 2) gulonate can be metabolized 
to arabitol/xylitol. Interestingly, studies in castrated rats and 
chickens have shown that the synthesis and distribution of 
ascorbic acid is under hormonal regulation (Dieter, 1969; 
Khandwekar et al., 1973). However, for a better understand-
ing of metabolomic changes, analyzing the relevant tissues 
and integrating them with transcriptomic data would help 
reveal the regulatory networks and gene expression changes 
that drive these metabolisms.

This work establishes the groundwork for further investiga-
tions into the mechanisms that regulate differences at the sex 
level in pigs and other farm animals. Specifically, it is import-
ant to analyze the metabolomic profiles of entire and castrated 
male pigs to better understand the links between metabolic 
pathways and castration-induced physiological changes that 
cannot be fully understood by comparing castrated males 
with intact gilts. Additionally, despite some limitations, 
this study also creates new research opportunities, such as 
exploring the impact of these reported metabolomic differ-
ences on behavior and production, and how these findings  
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can inform management and feeding strategies. In the con-
text of adopting precision feeding strategies, split-sex feeding, 
which involves providing different diets to gilts and castrated 
males, can be used to better match nutrient supply with the 
physiological needs of pigs. This approach is justified by 
sex-related differences in feed intake behavior, growth per-
formance, and feed conversion ratio. Moreover, it must be 
acknowledged that this practice can benefit pig production 
systems at 2 other levels: 1) it offers an opportunity to opti-
mize economic returns (by maximizing growth efficiency and 
minimizing unnecessary nutrient oversupply), and 2) can 
reduce nitrogen excretion, thereby supporting more environ-
mentally sustainable production systems. Thus, in this con-
text, the metabolomic profiling of different sexes can provide 
valuable biological insights into the physiological responses 
to feeding of the animal, helping refine nutritional strategies. 
In turn, this information contributes to improving animal 
health, welfare, and production efficiency.

Conclusions
This study represented the first evaluation at a large scale 
of sex-influenced plasma metabolomic features in pigs. We 
detected different compounds, mainly amino acids, differ-
entially abundant between castrated males and intact gilts, 
providing a better understanding of the metabolic differences 
between these 2 groups of pigs. Metabolic differences may 
open novel avenues to better address nutritional needs of cas-
trated males and intact gilts, which may result in the develop-
ment of precise management practices and feeding strategies, 
contributing to the sustainability of pig production systems.

Supplementary Data
Supplementary data are available at Journal of Animal Science 
online.
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