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In livestock, many economically important traits vary among breeds and lines, reflecting the influence 
of different genetic backgrounds on trait expression. In this study, we assessed how molecular 
phenotypes vary among three heavy pig breeds, by analysing the level of more than 180 plasma 
metabolites using a targeted metabolomic platform. Plasma was from 12 Italian Large White, 12 
Italian Duroc and 12 Italian Landrace pigs, raised and fed in the same way. Advanced data analysis 
methods, including the Boruta algorithm and random forest, were employed to compare plasma 
profiles in the three breeds. The level of 11, 14 and five metabolites differed between Italian Duroc 
and Italian Large White breeds, Italian Duroc and Italian Landrace breeds and Italian Large White and 
Italian Landrace breeds, respectively. Distinct breed-related metabolic profiles emerged, aligning with 
known characteristics of the breeds. Specifically, Italian Duroc pigs are marked by diminished biogenic 
amine levels, Italian Large White pigs by lower sphingomyelin levels, and Italian Landrace by elevated 
acylcarnitine and phosphatidylcholine levels. These results suggest potential differences in breed-
related energy and lipid metabolism strategies. These findings could be used to develop new molecular 
phenotypes useful in pig breeding and selection and to explore breed-precision feeding strategies.
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Metabolomics is an omics discipline that studies the metabolome, defined as the full set of small molecules 
(metabolites) within a biological system1,2. Metabolites, as intermediate or final products of metabolic 
pathways, constitute molecular phenotypes that play crucial roles in fundamental biological processes. 
Therefore, metabolites serve as intermediaries linking the genetic background of an organism to more complex 
phenotypes3, making them valuable targets for identifying biomarkers associated with economically relevant 
traits in livestock species4. Given the complexity of datasets generated by metabolomic technologies such as mass 
spectrometry (MS) and nuclear magnetic resonance (NMR), appropriate statistical tools, including supervised 
and unsupervised models, are essential for accurate data analysis and interpretation5,6.

In pigs, many economically important traits, such as muscle mass, carcass composition, growth rate, feed 
efficiency, and reproductive performance vary among breeds and lines, reflecting the influence of different 
genetic backgrounds on trait expression7,8. These traits, seen as endpoint or final phenotypes, are shaped by 
complex biological processes, the underlying mechanisms of which remain largely unexplored9.

Comparative metabolomics between breeds assumes that genetic differences are the primary source of 
metabolic variation between breeds, when environmental factors are controlled10. Although this approach 

1Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, 
University of Bologna, Viale Giuseppe Fanin 46, Bologna 40127, Italy. 2Department of Surgical and Medical 
Sciences, Endocrinology Unit, University of Bologna, Via Giuseppe Massarenti 9, Bologna 40138, Italy. 3Department 
of Statistical Sciences “Paolo Fortunati”, University of Bologna, Via delle Belle Arti 41, Bologna 40126, Italy. email: 
luca.fontanesi@unibo.it

OPEN

Scientific Reports |        (2025) 15:39296 1| https://doi.org/10.1038/s41598-025-23058-z

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-23058-z&domain=pdf&date_stamp=2025-10-7


does not elucidate specific mechanisms, it provides initial evidence indirectly linking genotypes to metabolite 
levels. Identifying metabolic markers that differentiate breeds offers novel insights into breed-related and breed-
specific physiological mechanisms governing breed differences in economically relevant traits. This supports 
the biological dissection of complex traits, with implications for understanding heterosis in pig crossbreeding 
programs10.

Several studies have explored breed-related metabolomic differences, although environmental confounding 
remains a challenge to really assume that breed-derived genetic diversity can be considered the factors determining 
claimed differences. For instance, a few studies identified muscle metabolic biomarkers distinguishing different 
breeds or crossbred pigs some of which associated with meat quality characteristics11–16. Rohart et al.17 utilized 
plasma metabolomic data to predict performance traits among Large White, Landrace, and Pietrain pigs. 
Additionally, He et al.18 compared serum metabolomes of obese Ningxiang pigs and lean Duroc × Landrace × 
Yorkshire crossbreds as a model for childhood obesity research.

We previously characterized plasma and serum metabolomes of Italian Large White and Italian Duroc pigs 
using targeted and untargeted approaches, and integrated these data with genomic information10,19,20. Building 
on this work, we now extend for the first time metabolomics analysis to include the Italian Landrace breed, a 
population of major economic relevance21 but not yet studied at the metabolomic level. Using a targeted mass 
spectrometry-based platform detecting approximately 180 metabolites, together with advanced data analysis 
methods we previously developed (Boruta algorithm and random forest19,22, we compared plasma profiles 
across the three heavy pig breeds: Italian Large White, Italian Duroc, and Italian Landrace. These three pig 
breeds, essential in producing three-way crossbred pigs used within the Italian heavy pig production system, 
exhibit significant differences in production traits, with Italian Duroc pigs having higher intramuscular and 
intermuscular fat content compared to both Italian Large White and Italian Landrace breeds. These breeds 
are similar to the corresponding cosmopolitan breeds. At the same time, we aim at confirming and extending 
previous findings obtained for the Italian Duroc and Italian Large White comparisons10,19, thus reinforcing the 
robustness and reproducibility of metabolomics approaches.

Methods
Considering the range of analyses performed that will be detailed in the next sections, we provide here a brief 
overview of the main data analysis steps (Fig. 1): (1) plasma samples from pigs representing three Italian breeds 
were subjected to targeted metabolomics; (2) obtained data underwent quality control and were corrected for 
sex and carcass weight using linear regression; residuals were retained for subsequent analyses; (3) breed-related 
metabolites were identified through Boruta feature selection, applied both to pairwise breed comparisons and to 
the joint dataset including all three breeds; (4) selected metabolites were further evaluated using a random forest 
to obtain variable importance measures and classification errors; (5) the predictive performance of discriminant 
metabolites was assessed using Receiver Operating Characteristic (ROC) curve analysis and the area under the 
curve (AUC) and Mann-Whitney U tests  (MWU); (6) Principal Component Analysis (PCA) was applied to 

Fig. 1.  Overview of the analytical workflow. Abbreviations: ILW, Italian Large White; IDU, Italian Duroc; ILA, 
Italian Landrace; PCA, Principal Component Analysis; ROC-AUC, Receiver Operating Characteristic curve 
and Area Under the Curve; MWU, Mann-Whitney U test; MDG, Mean Decrease Gini; OOB, Out-Of-Bag; 
LMs, Linear Models; QC, Quality Control; Δ%, relative concentration difference between breeds.
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investigate breed separation before and after feature selection; (7) finally, a previously generated metabolomics 
dataset (IDU and ILW) was reanalysed with the Boruta-based pipeline to validate earlier results and harmonize 
findings across studies. A complete description of the animals included in the study, the metabolomic platform 
used and the applied methodological steps is reported in the subsequent paragraphs.

Animals, blood sampling and processing
The study was carried out in compliance with the ARRIVE guidelines. Animals used in the study were kept in 
compliance with the Italian and European legislation for pig production (DLgs 122/2011 and Council Directive 
2008/120/EC). Ethical review and approval were waived for this study because animals were not specifically 
raised or treated for the study, and blood samples were collected post-mortem during regular economic 
slaughter provided in a professional slaughterhouse, with procedures following guidelines established by Italian 
and European Union regulations for animal care and slaughter (Council Regulation (EC) No 1099/2009).

A total of 36 healthy pigs were included in this study: 12 Italian Landrace (ILA; five castrated males and seven 
gilts), 12 Italian Large White (ILW; six castrated males and six gilts) and 12 Italian Duroc (IDU; six castrated 
males and six gilts) pigs. All pigs were derived from the sib-testing programmes managed by the National 
Association of Pig Breeders (ANAS). Animals were provided food and water semi-ad libitum and housed under 
identical conditions in the same location until they reached approximately 155 ± 5 kg live weight. Animals were 
then transported to a commercial abattoir and slaughtered all on the same day in the morning at around 8:00 
a.m. Blood was collected in EDTA tubes (Vacutest Kima, Padua, Italy) immediately after jugulation directly from 
the draining carotid, processed within two hours and stored at −80 °C for metabolomic analyses. Processing 
included inversion of the tubes eight to ten times and then centrifugation at 2,420 × g for 10 min at + 4 °C. 
Animals were raised and treated uniformly to ensure that observed metabolic differences reflected breed-specific 
genetic backgrounds.

Metabolomic profiling of Porcine plasma samples
Targeted metabolomics, based on the Biocrates AbsoluteIDQ™ p180 kit (BIOCRATES Life Science AG, 
Innsbruck, Austria), was used to analyse porcine plasma samples. This Biocrates platform analyses 186 
metabolites across seven analyte subclasses: 40 acylcarnitines (AC), 21 amino acids (AA), 19 biogenic amines 
(BA), 1 monosaccharide (namely hexoses, including glucose), 14 lyso-phosphatidylcholines (LysoPC), 76 
phosphatidylcholines (PC; aa: diacyl; ae: acyl-alkyl) and 15 sphingomyelins (SM). All samples were processed 
on a single Biocrates plate alongside two replicated samples for quality control during quantification assessment. 
The analyses were conducted using a Serie 200 HPLC system (Perkin Elmer, Inc., Waltham, MA, USA) coupled 
with an API 4000 QTrap mass spectrometer (AB-Sciex, Framingham, MA, USA).

Following a similar approach to our previous work10, data filtering involved a three-step procedure to assess 
each metabolite: (i) intraplate coefficient of variation, (ii) percentage of missing values (NA) and zero values 
in the dataset, and (iii) identification of outlier samples. Subsequently, metabolite levels were regressed over 
covariates (fixed effects: sex and carcass weight) to eliminate any potential confounding effects. Briefly, the 
model was: yi = β 0 + β wwi + β ssi + ξ i , where yi denotes the metabolite concentration for the ith animal, 
β0 denotes the intercept term, wi indicates the weight of the ith animal, si indicates the sex of the ith animal, βw 
and βs are the corresponding regression coefficients and ξi is the error term. Residuals were then obtained and 
used in data analysis. Regression analysis was performed on the overall dataset (comprising all animals from the 
three breeds). Additional information on the targeted metabolites, analytical methods and statistical models can 
be found in10 and Supplementary Table S1. All analyses were conducted using R v.4.2.323.

Identification of differentially abundant metabolites
For each metabolite, relative concentration difference between breeds (Δ%10,19; was first calculated. Differential 
abundance was then assessed using supervised multivariate modelling with Boruta, a wrapper for a random forest 
classification algorithm24. Pairwise comparisons (pairwise setup; ILA vs. IDU, IDU vs. ILW, and ILA vs. ILW; 
hereafter ILA-IDU, IDU-ILW, and ILA-ILW) were performed, modelling the breed as the response variable and 
metabolite residuals as predictors. Metabolites classified as “Confirmed” were considered discriminant. Boruta 
was parameterized as in our previous studies19,22 and validated through (i) five runs with different random seeds 
and (ii) leave-one-out (LOO) cross-validation. In pairwise analyses (N = 24), LOO iteratively excluded one 
sample, and five Boruta runs were applied to the remaining N−1 samples, yielding 120 runs (5 × 24). The same 
procedure was extended to the full dataset (N = 36) in a multi-class setup, resulting in 180 runs (5 × 36).

The analysis was conducted in Python v3.11.7, using the BORUTA_py and scikit_learn packages. Based on 
the results of these latter validation steps, metabolites were retained and categorized into two subsets: (1) “highly 
reliable”, i.e. selected in all runs (120/120 in pairwise comparisons or 180/180 in the multi-class setup; 100%) 
and (2) “moderately reliable”, i.e. selected in at least 108/120 runs (≥ 90%) in pairwise setup or ≥ 144/180 in the 
multi-class setup. Metabolites that did not meet these criteria were labelled as unstable contributors to breed 
discrimination.

Following our previous studies19,22, selected metabolites were then used as input for a random forest analysis 
to obtain (i) the Mean Decrease Gini (MDG) value, indicative of the importance of each metabolite and (ii) the 
Out-Of-Bag (OOB) score and error, two indexes measuring the prediction performance of the random forest 
(and consequently Boruta). The random forest analysis was conducted in R v.4.2.3 (package randomForest25), 
with the option to grow 1,000 trees. Additional details are provided in our previous studies19,22.

Metabolites were further evaluated for their predictive performance using a ROC-AUC value obtained from 
the function auc of the R package pROC26.

Scientific Reports |        (2025) 15:39296 3| https://doi.org/10.1038/s41598-025-23058-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Differences in metabolite levels between pairs of breeds were also tested in a univariate manner by applying 
the Mann-Whitney U Test (MWU).

In addition to the OOB values, the discriminant power of selected metabolites was evaluated by performing 
PCA on the datasets both before and after metabolite selections. For PCA, the data were scaled to have unit 
variance. The analyses run in R v.4.2.323.

Boruta-based re-analysis of the previously IDU-ILW investigated dataset
In our previous pilot study10, we profiled the metabolome of 12 IDU and 12 ILW pigs using both plasma 
and serum samples that were analysed with the Biocrates p180 kit. After filtering, the dataset contained 154 
metabolites, which were originally analysed using sparse Partial Least Squares Discriminant Analysis (sPLS-DA) 
on residuals obtained from linear models that accounted for sex and carcass weight. Here, we re-analysed the 
same dataset using our Boruta-based pipeline, as described above, to validate the previously obtained results and 
to facilitate direct comparison with the new ILW and IDU independent dataset, analysed in the current study. 
Both plasma and serum samples were included in this re-analysis.

Results
General overview of the metabolomic panel
After filtering, the final dataset included a total of 181 out of 186 metabolites from the Biocrates panel. The five 
excluded metabolites had the following characteristics: (i) one metabolite (C12) had a coefficient of variation 
greater than 20 across quality controls (replicates), (ii) three metabolites (3-nitro-tyrosine, cis-4-hydroxyproline 
and phenylethylamine) had concentrations lower than the limit of detection (LOD) across quality controls 
(replicates) and (iii) one metabolite (aspartate) had concentrations lower than the LOD for more than 30% of the 
samples. Supplementary Table S1 lists evaluated metabolites, their coefficients of variation, average abundance, 
range of variation, and standard deviation in the three different breeds.

Metabolomic differences between Italian heavy pig breeds
Preliminary PCA based on the entire metabolomics profile (n. 181 metabolites) was conducted to explore 
differences between breeds. Analyses were performed on both the global dataset level (including all pigs from 
the three breeds; Fig. 2a) and on the datasets used in pairwise comparisons (each dataset containing pigs from 
two breeds only; Fig. 2b-d). Overall, while some clusters representing breeds are visible, there is a noticeable 

Fig. 2.  Results of Principal Component Analyses (shown for Principal Component 1 and Principal 
Component 2, PC1 and PC2) based on (a-d) the whole metabolomic profiles and (e-h) Boruta-selected 
metabolites.
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overlap, indicating that the whole metabolite profile contains several metabolic features shared across breeds. 
Additionally, despite the fact that the first principal component (PC1) captured most of the variance (ranging 
from 35.2 to 41.5%), it is not the primary axis separating the breeds (Fig. 2b-d).

Boruta was then used to identify breed-related metabolites. Analyses returned a total of 14, 11 and 5 
metabolites selected in the ILA-IDU, IDU-ILW and ILA-ILW comparisons (Table  1), respectively. The 
proportion of runs in which each metabolite was retained is reported in Supplementary Table S2. Adoption 
of these metabolites for PCA (Fig. 2e-g) resulted in more pronounced separation among breeds due to PC1, 

Mann-Whitney U Test6

Metabolite1 Analyte class2 Δ%3 MDG4 AUC5 ILA-IDU IDU-ILW ILA-ILW

Comparison: ILA-IDU

PC aa C36:5 ILA−ILW, MC GP −66 1.60 0.97 1.4E-04* 8.9E-01 7.4E-04*

PC ae C42:2 ILA−ILW, MC GP −72 1.37 0.97 4.7E-05* 2.0E-01 2.1E-04*

Ac-Orn IDU−ILW, MC BA −107 1.24 0.96 4.5E-05* 2.7E-04* 2.9E-01

PC aa C38:5 GP −32 0.81 0.91 2.4E-04* 4.4E-01 7.9E-02

C6 (C4:1-DC) MC AC −29 0.79 0.89 6.0E-04* 3.0E-02 6.0E-02

SM C22:3 SM −55 0.70 0.86 6.3E-04* 4.8E-01 2.7E-02

Kynurenine IDU−ILW, MC BA −105 0.64 0.86 6.7E-03* 1.5E-06* 6.5E-01

Thr ILA−ILW AA −29 0.62 0.89 1.5E-03* 4.4E-01 1.3E-03*

PC ae C40:1 ILA−ILW, MC GP −77 0.60 0.91 1.1E-04* 6.3E-01 9.8E-04*

C6:1 AC −15 0.57 0.91 3.4E-04* 1.0E + 00 1.6E-02

Pro AA −31 0.55 0.89 2.2E-04* 1.0E-02 1.9E-01

PC aa C36:4 GP −45 0.54 0.91 1.5E-04* 4.8E-01 3.2E-02

ADMA IDU−ILW, MC BA −42 0.52 0.91 1.9E-04* 3.7E-04* 4.5E-01

C3-DC (C4-OH) AC −31 0.45 0.89 1.5E-04* 4.8E-01 1.1E-02

Comparison: IDU-ILW

Kynurenine ILA−IDU, MC, A, B BA 56 3.00 0.99 2.8E-03* 1.5E-06* 6.5E-01

ADMA ILA−IDU, MC BA 32 1.22 0.90 4.0E-04* 3.7E-04* 4.5E-01

SM (OH) C14:1 MC, A SM −21 1.08 0.86 5.7E-01 1.8E-03* 1.6E-02

Ac-Orn ILA−IDU, MC, A, B BA 45 0.95 0.91 2.8E-05* 2.7E-04* 2.9E-01

lysoPC a C20:3 ILA−ILW, MC GP −28 0.86 0.85 9.1E-02 2.9E-03* 6.7E-05*

SM (OH) C22:2 MC SM −22 0.86 0.82 2.7E-02 6.8E-03* 1.5E-01

SM (OH) C16:1 A, B SM −21 0.75 0.85 3.5E-01 2.9E-03* 6.9E-02

lysoPC a C14:0 GP 10 0.72 0.85 2.7E-02 2.9E-03* 3.8E-01

Trp B AA −24 0.71 0.88 9.3E-01 1.1E-03* 1.9E-02

PC ae C44:3 GP 13 0.70 0.76 1.3E-02 2.8E-02* 3.7E-02

C18:2 B AC −54 0.60 0.88 4.4E-02 8.6E-04* 2.9E-01

Comparison: ILA-ILW

lysoPC a C20:3 IDU−ILW, MC GP −51 3.53 0.95 9.1E-02 2.9E-03* 6.7E-05*

PC ae C42:2 ILA−IDU GP −56 2.11 0.92 1.8E-05* 2.0E-01 2.1E-04*

Thr ILA−IDU AA −25 1.97 0.88 7.4E-04* 4.4E-01 1.3E-03*

PC ae C40:1 ILA−IDU, MC GP −67 1.70 0.89 4.0E-04* 6.3E-01 9.8E-04*

PC aa C36:5 ILA−IDU, MC GP −67 1.68 0.89 1.8E-05* 8.9E-01 7.4E-04*

Table 1.  Differentially abundant metabolites (n. 22) identified by Boruta in the analysed pig breeds 
(Italian large White, ILW; Italian Landrace, ILA; Italian Duroc, IDU). Metabolites selected in each pairwise 
comparison are reported sorted by the mean decrease Gini (MDG) value. 1 Molecule selected by Boruta in 
the specified comparison. Full names are provided in Supplementary Table S1. If Boruta selected a molecule 
in other breed comparisons, the information is presented as a superscript in the format ILA-IDU, IDU-ILW 
and ILA-ILW. Metabolites identified by using the multi-class approach are labelled with the superscript in 
the format “MC”. For the IDU-ILW comparison we report also if the metabolite was selected in the Boruta-
based re-analysis of the 2016 IDU-ILW dataset10 (superscript in the format “A”) and/or in our previous study 
using an untargeted platform in a larger sample size19 (superscript in the format “B”). 2 Biological class of the 
molecule, as provided by Biocrates (AA: amino acid, AC: acylcarnitine, BA: biogenic amine, GP: glycero-
phospholipid, SM: sphingomyelin). 3 Relative difference in concentration between pairs of breeds. For the 
ILA-IDU, IDU-ILW and ILA-ILW, a negative value indicates higher metabolite levels in IDU, ILW and ILW, 
respectively. 4 Mean Decrease Gini (MDG) value obtained from the random forest analysis. 5 Area Under the 
Curve (AUC) value obtained from the Receiver Operating Characteristic curve analysis. 6P-values obtained at 
the Mann-Whitney U Test. The star symbol (*) is used to mark p-values < 0.01.
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explaining variance that increased up to 81%, and suggesting these metabolites as the among the drivers of the 
observed metabolic divergence among breeds. Overall, the total number of selected metabolites was 22, with 
some metabolites contributing as discriminant in two (or more) pairwise comparisons (Table 1; Fig. 3). Based 
on their chemical class, these 22 metabolites included 4 acylcarnitines, 3 amino acids, 3 biogenic amines, 2 lyso-
phosphatidylcholines, 6 phosphatidylcholines and 4 sphingomyelins.

In the ILA-IDU comparison, the 14 selected metabolites (Table 1) included all chemical classes mentioned 
above except for lysoPC. Within-breed relationships between metabolite abundances are given in Fig.  4a. 
Corresponding correlation coefficients and p-values are reported separately for ILA (Supplementary Table S3) 
and IDU (Supplementary Table S4)  pigs. These metabolites remained stable throughout the discrimination 
process, passing all the LOO runs and forming a “highly reliable” metabolite set, except for three metabolites 
[C3-DC (C4-OH), C6:1 and ADMA] that were placed in the “moderately reliable” metabolite set (≥ 90% of LOO 
runs). In the quantitative evaluation of metabolite levels (Fig. 3a), it is noteworthy that all selected metabolites 
showed negative Δ% values, indicating lower metabolite levels in IDU compared to ILA pigs. Extreme values of 
Δ% (|Δ|% = 105) were observed for kynurenine and N-acetylornithine (Ac-Orn), two biogenic amines out of the 
three representing this metabolite class in the selected subset. All other metabolites had |Δ|% in the range of 15–
77. In terms of discriminative power, when evaluated using AUC statistics, the values were high, ranging from 
0.86 to 0.97, with the highest values (> 0.95) for Ac-Orn and two phosphatidylcholines (PC aa C36:5 and PC ae 
C42:2). These three metabolites also had the highest MDG values. The OOB error rate was 13% (misclassified 
pigs: two ILA and one ILW pigs). According to the Mann-Whitney U test, all metabolites showed p-values < 0.01, 
with nine remaining significant after correction for multiple testing (Bonferroni, 0.05/181). Three and four 
metabolites from this selection set were also identified in the IDU-ILW and ILA-ILW comparisons, respectively 
(Table 1; Fig. 3).

When comparing the IDU-ILW profiles, the 11 selected metabolites (Table 1) included all the chemical classes 
mentioned. Within-breed relationships between metabolite abundances are given in Fig.  4b. Corresponding 
correlation coefficients and p-values are reported separately for IDU (Supplementary Table S4) and ILW 
(Supplementary Table S5) pigs. The process of selecting metabolites for this dataset was less stable compared 
to the ILA-IDU comparison, with half of the selected metabolites belonging to the “highly reliable” set and the 
other half to the “moderately reliable” set. Quantitatively, half of the metabolite set had low levels in IDU pigs 
(positive Δ%), while the other half had high levels in IDU pigs (negative Δ%), with Δ% values ranging from 
+ 56 to −54. Acylcarnitine C18:2 (higher levels in IDU pigs) and kynurenine (lower levels in IDU) represented 

Fig. 3.  Differentially abundant metabolites (n. 22) identified by Boruta in the pairwise analyses of pig 
breeds (Italian Large White, ILW; Italian Landrace, ILA; Italian Duroc, IDU). (a) Heatmap of metabolites 
concentrations (residuals; scaled) and their source dataset (analysed dataset). (b) Venn diagram showing 
the overlap of metabolites among the analysed breed datasets. Full names of metabolites are provided in 
Supplementary Table S1.
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the extreme values. The discriminative power of each selected metabolite, based on AUC values, was quite 
high, ranging from 0.76 to 0.99. High AUC values (≥ 0.90) were assigned to all three biogenic amines in this 
metabolite set: ADMA (AUC = 0.90), Ac-Orn (AUC = 0.91) and kynurenine (AUC = 0.99). The OOB error was 
very low, at 4% (misclassified pig: one ILW). It is worth noting that these three metabolites (ADMA, Ac-Orn and 
kynurenine) were also selected in the previous comparison (ILA-IDU) (Table 1; Fig. 3), showing lower values 
in IDU compared to ILW and ILA (and similar levels between ILA and ILW). According to the Mann-Whitney 
U test, all metabolites, except PC ae C44:3, showed p-values < 0.01, but only two (Ac-Orn and kynurenine) 
remained significant after correction for multiple testing.

In the ILA-ILW comparison, five metabolites were selected (Table  1): one amino acid (threonine), three 
phosphatidylcholines (PC aa C36:5, PC ae C40:1, and PC ae C42:2), and one lysophosphatidylcholine (lysoPC 
a C20:3). Within-breed relationships between metabolite abundances are given in Fig.  4c. Corresponding 
correlation coefficients and p-values are reported separately for ILA (Supplementary Table S3) and ILW 
(Supplementary Table S5) pigs. The small number of discriminative metabolites emphasizes the high similarity 
between the two breeds, as also seen in genetic analyses. However, it is important to note that only a portion 
of the plasma metabolome has been examined here, and this observation is specific to that context. This may 
explain the high error rate obtained in the random forest implementation: OOB was 18%, with one ILA and two 
ILW pigs misclassified. Quantitatively, all these metabolites had lower levels in the ILW pigs, with Δ% values 
ranging from − 25% to −67%. Interestingly, all five of these metabolites were also found to be discriminant 
features in previous pairwise comparisons (Table 1; Fig. 3): four (threonine and the phosphatidylcholines) and 
one (lysoPC a C20:3) in the ILA-IDU and IDU-ILW comparisons, respectively. The AUC values ranged from 
0.88 to 0.95. The molecule lysoPC a C20:3 had the highest AUC and MDG values. According to the Mann-
Whitney U test, all five metabolites showed p-values < 0.01, but only two (lysoPC a C20:3 and PC ae C42:2) 
remained significant after correction for multiple testing.

When all three breeds were analysed together using Boruta (multi class setup), 11 metabolites were identified 
(Table 1, Supplementary Table S2). These included: 2 acylcarnitines [C6 (C4:1-DC) and C6:1], 3 biogenic amines 
(Ac-Orn, kynurenine, and ADMA), 4 phosphatidylcholines (PC aa C36:5, PC ae C40:1, and PC ae C42:2), 1 
lysophosphatidylcholine (lysoPC a C20:3), and 2 sphingomyelins [SM (OH) C22:2 and SM (OH) C14:1]. All 
these metabolites had also been identified in at least one of the pairwise breed comparisons (Table 1). A PCA 
plot based on this metabolite set is shown in Fig. 2h. Using this set, OOB error was approximately 20%. Notably, 
comparison with the pairwise analyses revealed that half of these discriminant metabolites (11 out of 22) were 
not retained in this multi-class analysis. These included: Trp (ILW-IDU), Thr (ILA-IDU and ILA-ILW), Pro 
(ILA-IDU), C3-DC (C4-OH) (ILA-IDU), C18:2 (ILW-IDU), PC aa C36:4 (ILA-IDU), PC aa C38:5 (ILA-IDU), 
PC ae C44:3 (IDU-ILW), lysoPC a C14:0 (IDU-ILW), SM (OH) C16:1 (IDU-ILW), and SM C22:3 (ILA-IDU).

Boruta-based re-analysis of an independent IDU-ILW dataset
The previously investigated and independent IDU-ILW dataset10 from that analysed in the current study included 
24 animals (12 ILW and 12 IDU pigs) with both plasma and serum metabolomic profiles, originally analysed 

Fig. 4.  Pearson correlation matrices showing the within-breed relationships among the 22 metabolites 
identified by Boruta (pairwise comparisons) in the analysed pig breeds (Italian Large White, ILW; Italian 
Landrace, ILA; Italian Duroc, IDU). (a) ILA-IDU comparison; upper triangle: relationships in IDU pigs; 
lower triangle: relationships in ILA pigs. (b) IDU-ILW comparison; upper triangle: relationships in ILW pigs, 
lower triangle: relationships in IDU pigs. (c) ILA-ILW comparison; upper triangle: relationship in ILW pigs; 
lower triangle: relationships in ILA pigs. Metabolites selected in each comparison are indicated with the star 
(*) symbol. Relevant correlations (|r|≥0.5; regardless of their p-value) are indicated with the dot (●) symbol. 
Correlation values and associated p-values are reported in Supplementary Tables S3–S5.
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using sPLS-DA. We re-analysed this dataset to evaluate the performance of our newly developed Boruta-based 
approach. In plasma, sPLS-DA identified three metabolites [Ac-Orn, kynurenine, SM (OH) C14:1], all confirmed 
by Boruta, which additionally detected SM (OH) C16:1, consistent with results obtained in the current and new 
dataset. Overall, these four metabolites were shared between the re-analysed and the new dataset. In serum, 
sPLS-DA identified four metabolites [Ac-Orn, SM (OH) C14:1, SM (OH) C16:1, SM C16:0], all confirmed by 
Boruta, with no additional metabolites detected. The proportion of runs in which each metabolite was retained 
is reported in Supplementary Table S6. PCA plots before and after metabolite selection are provided for plasma 
(Supplementary Fig. S1a-b) and serum (Supplementary Fig. S1c-d). For the random forest implementation, 
MDG values are given in Supplementary Table S6. The out-of-bag (OOB) error was low in plasma (12.5%) but 
higher in serum (30%).

Discussion
In this study, we focused on the identification of metabolites that differ in concentration levels and can 
discriminate breeds when used in a classification task. Their identification is inherently connected to the 
underlying metabolic differences between breeds, reflecting the biological interpretation of abundance variation. 
The metabolites that were identified support and expand our understanding of the metabolome of heavy pigs. 
Specifically, the results pertain to the plasma metabolome of animals at approximately nine months of age, with 
a live weight of around 160 kg, which corresponds to the very late stage of the Italian heavy pig production 
system: the finishing and slaughtering phase, which is however quite similar in terminal pigs of other production 
systems. Blood samples (from which plasma was separated and used for metabolomic analysis) were collected 
at the abattoir just after the animals were slaughtered. Pigs at this stage meet the required carcass characteristics 
defined in the regulations for Protected Designation of Origin (PDO) dry-cured ham production21.

Metabolomics studies comparing Italian pig breeds have been limited so far, with targeted (Biocrates panel) 
and untargeted (Metabolon platform) approaches only used to compare ILW and IDU pigs10,19. By including 
ILA pigs representing a third genetic background, we extended our knowledge through a comparative analysis 
of metabolic profiles across heavy pig populations, providing a deeper understanding of breed-related molecular 
phenotypes. Although this was a pilot study with a limited sample size (12 pigs per breed), we designed the 
experiment to minimize both environmental and biological confounding factors, by considering: (i) standardized 
animal conditions, as all pigs were raised, fed and treated in the same way, and slaughtered on the same abattoir 
within 1 h (each animals were slaughtered within few minutes), (ii) a balanced sex ratio, to ensure sex-related 
metabolic differences were accounted for in the analysis and (iii) consistent analytical procedures, as samples 
were processed and stored in the same way by the same operator, and metabolomic profiling was conducted on a 
single Biocrates plate, with the analysis running continuously for 12 h. Furthermore, since previous studies have 
already compared IDU with ILW pig populations10,19, we can also consider part of this study as a replication 
study for these two breeds.

To identify differentially abundant metabolites, we utilised a statistical pipeline based on Boruta, a random 
forest wrapper. This approach was chosen because Boruta addresses the all-relevant feature selection problem24, 
allowing the identification of the complete set of informative metabolites for prediction, rather than only the 
minimal set required for a predictive model (minimal-optimal model)24, as in sparse Partial Least Squares 
Discriminant Analysis (sPLS-DA) used in our previous study10. Our strategy was to test breed differences 
in a pairwise manner, so that any metabolite showing a difference between two groups could be considered 
informative and selected. In contrast, the multi-class setup (all three breeds analysed together) requires 
simultaneous separation of classes, and thus only metabolites that consistently contribute to distinguishing all 
groups are retained. As a result, fewer metabolites were selected in the three-class case, since the selection criteria 
are stricter. Overall, the pairwise analyses identified 22 discriminant metabolites, of which 11 were also retained 
by the multi-class setup. Notably, 10 of the 11 metabolites not retained were detected in only one specific pairwise 
comparison, reflecting their ability to separate one breed from another but not all three simultaneously.

Consistent with our previous pilot study using the same Biocrates panel10, most of the metabolites identified 
by Boruta as differentiating IDU and ILW pigs (IDU-ILW comparison) were confirmed. Specifically, Ac-Orn, 
kynurenine, SM (OH) C14:1 and SM (OH) C16:110 were identified, reinforcing our understanding of metabolic 
differences between these two breeds. The relevance of these four metabolites was further confirmed by re-analysis 
of our previous IDU-ILW dataset10 using the novel Boruta-based pipeline, supporting the robustness of both the 
analytical platform and the data analysis approach. Ac-Orn, kynurenine and SM (OH) C16:1 were also confirmed 
using the untargeted platform that we recently utilised to compare the plasma metabolome of the same two 
pig breeds19, along with tryptophan (trp) and linoleoylcarnitine (C18:2). Notably, tryptophan and kynurenine, 
two molecules of the kynurenine pathway (involved in tryptophan metabolism), emerged as key differentiating 
metabolites. These molecules play important roles in brain functions, immunity, and reproduction27. The 
difference in kynurenine levels between these two breeds can be attributed to their distinct genetic backgrounds, 
as our recent metabolite genome-wide association studies (mGWAS) identified a major metabolite quantitative 
trait locus (mQTL) for kynurenine in both breeds20. This mQTL includes the kynurenine 3-monooxygenase 
(KMO) gene, that encodes a key enzyme responsible for converting L-kynurenine to 3-hydroxy-L-kynurenine. 
Specifically, two major KMO haplotypes with opposite frequencies were found in ILW and IDU pigs, explaining 
the variations in kynurenine levels20. Similarly, genomic associations for Ac-Orn, ADMA and C18:2 were also 
identified in one or both breeds20. No associations were found in mGWAS for the other metabolites. However, it 
is possible that the lack of associations reported in the mGWAS study is due to the small sample size of the Duroc 
population analysed, which may have resulted in an underpowered experiment. The IDU-ILW comparison also 
revealed several sphingomyelins, which are molecules involved in cell signaling, membrane integrity, stability, 
and energy storage. This finding could be related to the intermuscular fat deposition process that characterises 
the Duroc breed28.
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Similarly to the IDU-ILW comparison, which was characterized by 11 differentially abundant metabolites, 
the ILA-IDU comparison revealed even more differences (14 metabolites). In contrast, the ILA-ILW comparison 
showed only a few differences (5 metabolites), which was expected given the genetic closeness and selection 
histories of these two breeds28,2930: Duroc pigs are generally selected to improve intramuscular fat (IMF), 
meat quality and robustness, while Large White and Landrace pigs are selected for lean growth, reproductive 
performance, and efficiency28,31. The IDU-ILW and ILA-IDU comparisons shared metabolites, including Ac-
Orn, kynurenine and ADMA. The levels of these metabolites were generally lower in IDU and higher in ILW 
and ILA pigs, suggesting their potential as Duroc-specific biomarkers. Moreover, similar KMO allele frequencies 
observed in ILW and ILA pigs20 might explain the kynurenine differences seen specifically in the IDU-ILW 
comparison. Except for Ac-Orn and kynurenine, for most of the other differentially abundant metabolites 
no mQTL were detected, possibly due to the limited sample size of the Duroc breed20. Notably, the ILA-IDU 
comparison presented several differentially abundant acylcarnitines  (AC) [i.e. C6 (C4:1-DC), C6:1, and C3-
DC (C4-OH)], which were found at lower levels in IDU (and ILW) compared to ILA pigs. Acylcarnitines are 
metabolites synthesized within fatty acid metabolism (β-oxidation) and serve as markers of energy metabolism, 
reflecting lipid mobilization and utilization32. Notably, the identified molecular differences align with known 
phenotypic characteristics of the respective breeds. Italian Duroc pigs have higher intramuscular fat (IMF) and 
intermuscular fat content, meaning the muscle tissue has an internal energy reserve in the form of fatty acids. 
On the contrary, being characterized by less IMF, ILW and ILA pigs need to break down fat stored in adipose 
tissue via lipolysis (energy reserve), release free fatty acids into the blood, and transport them to muscles to 
support the energy demand33. Thus, when muscles rely on external fatty acids, fatty acid oxidation increases, 
producing and increasing acylcarnitines levels. In addition, a high level of these molecules not only suggest 
an enhanced lipid metabolism but may also indicate incomplete fatty acid β-oxidation and the subsequent 
acylcarnitine accumulation34,35. Italian Large White pigs, despite having low IMF content, showed acylcarnitine 
levels comparable to IDU pigs, possibly due to a more efficient balance between fat mobilization and oxidation, 
limiting acylcarnitine accumulation in the blood. Italian Landrace pigs were also characterised by elevated 
levels of several phosphatidylcholines (PC), essential components of cell membranes and relevant for lipid 
transportation and cell signalling processes. In particular, they are key components of lipoproteins (especially 
Very Low Density Lipoprotein), which transport lipids from the liver to tissues. Thus, the concurrent rise in both 
PC and AC in ILA pigs supports the hypothesis of enhanced lipid mobilization, in contrast to IDU and ILW pigs, 
where lipid oxidation may occur more directly within tissues. Notably, all phosphatidylcholines differentiating 
ILW from ILA pigs were also involved in the IDU-ILA comparison and not in the IDU-ILW, reinforcing the 
ILA-specific lipid profile. However, lysoPC a C20:3 had an unusual pattern, showing similar levels in IDU and 
ILA, despite most lysoPCs following the broader PC trends in these two breeds. It is noteworthy that a major 
ILW-specific mQTL appeared to regulate this metabolite, as well as PC ae C42:2 and PC ae C40:1, while PC aa 
C36:5 was linked to an mQTL unique to the IDU breed20. In order to better support these findings and fully 
explore the gene-metabolite relationships, it would be valuable to include gene expression data as an additional 
layer of intermediate molecules. This would allow for a better understanding of the regulatory networks and 
gene expression changes that drive these metabolic processes.

In summary, breed-related metabolic profiles emerged, aligning with known characteristics of the breeds 
(such as robustness and fat deposition potential). Specifically, IDU pigs are marked by diminished biogenic amine 
levels, ILW pigs by lower sphingomyelin levels, and ILA by elevated acylcarnitine and phosphatidylcholines 
levels. These findings suggest different breed-related energy and lipid metabolism strategies.

Conclusions
This study is the first to provide an integrated metabolomic characterisation of three Italian pig breeds: Italian 
Duroc, Italian Landrace, and Italian Large White. It offers a comprehensive overview of their metabolism and 
shed light on breed-related metabolic signatures, derived from their different genetic backgrounds. Although 
this study analyses a relatively limited number of metabolites (approximately 180) in one biofluid (the plasma), 
the results show potential metabolic biomarkers that reflect important molecular characteristics, unique to 
each breed. These findings could be used to develop new molecular phenotypes useful in pig breeding and 
selection and to explore breed-precision feeding strategies. Other studies are necessary to further characterise 
the metabolome profiles of pig breeds and apply them to practical solutions that improve sustainability in pig 
farming.

Data availability
The data that support the study findings are publicly available at: (https://doi.org/10.5281/zenodo.15301582).
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