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Feed represents the largest expense in pig farming and significantly affects the sustainability of the pro-
duction system. Therefore, enhancing feed efficiency is a key strategy to mitigate these costs and environ-
mental impacts. This is particularly relevant in the context of the heavy pig system in which animals are 
slaughtered at a heavier live weight than in many other production systems to follow the rules of 
Protected Designation of Origin (PDO) value chains. Since growth rate is correlated with feed efficiency, 
and under PDO rules, pigs cannot reach the slaughter weight earlier than a set age limit, the daily gain of 
the pigs needs to be controlled. In this study, we used untargeted metabolomics to identify plasma 
metabolites in Italian Large White heavy pigs that may differentiate between animals with divergent feed 
efficiency and growth rate, and that may constitute biomarkers for one or the other trait. From a starting 
cohort of 672 performance-tested pigs, two partially overlapping datasets of 200 pigs each, extreme and 
divergent for feed conversion ratio (FCR) and average daily gain (ADG), were selected. Approximately 700 
metabolites were analysed in the plasma of these pigs. Metabolomic data were analysed with the Boruta 
machine learning algorithm. Discriminant metabolites were further evaluated through univariate and
multivariate analyses. Boruta identified 10 and 7 metabolites that differentiate between FCR and ADG
extreme pigs, respectively, with an additional metabolite shared by the two datasets. Most metabolites
selected in the FCR dataset still show significant abilities to discriminate among high and low ADG pigs,
even if they have not been selected in the Boruta analysis, showing medium to high values of Area Under
the Curve, and highly significant Mann–Whitney test U P-values, while the opposite was not true. Among
the metabolites detected, L-carnitine and O-adipoylcarnitine, both involved in fatty acid metabolism,
were significantly higher in pigs with high FCR. Isoleucylhydroxyproline and prolylhydroxyproline, linked
to collagen turnover, were higher in low FCR pigs, potentially reflecting more efficient protein metabo-
lism. Other metabolites linked to gut microbiome activity significantly differentiate between high and
low FCR and ADG pigs, suggesting a potential role of the microbiota in nutrient utilisation. The identified
metabolomic profiles confirm that feed efficiency and growth rate are related yet distinct traits, whose
independent consideration will enhance the accuracy of biomarker discovery and genetic selection in
Italian heavy pigs.
© 2025 The Authors. Published by Elsevier B.V. on behalf of The animal Consortium. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 
Implications 

Improving feed efficiency is crucial for the economic and envi-
ronmental sustainability of pig breeding. Growth rate, which corre-
lates with feed efficiency, should be balanced in heavy pig
production systems. We used untargeted metabolomics in Italian 
Large White heavy pigs to identify biomarkers for two traits 
strictly related to these aspects: feed conversion ratio and average 
daily gain. This revealed metabolites and metabolic pathways 
involved in fatty acid oxidation, collagen turnover, bile acid meta-
bolism, and gut microbiome activity that differentiate pigs by feed
efficiency and growth rate, providing candidate biomarkers to sup-
port precise selection and nutritional strategies to improve produc-
tion efficiency.
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Introduction 

Improving the sustainability of livestock systems is a major goal 
of the animal production sector. In pig production, feed may 
account for up to 72% of the production costs and significantly
impacts greenhouse gas emissions, from crop production to feed-
stuff transportation and processing (Makkar, 2018; Noblet and
van Milgen, 2004; Rocadembosch et al., 2016). One possible strat-
egy to enhance the economic sustainability and reduce this specific 
impact in pig production is to improve the feed efficiency of the 
animals. Feed efficiency can be defined as the overall efficiency
with which the pig utilises dietary nutrients for maintenance and
growth (Patience et al., 2015). Feed efficiency is influenced by a 
combination of genetic, environmental, dietary, and physiological
factors, which are also linked to age (Gardiner et al., 2020;
Homma et al., 2021; Noblet and van Milgen, 2004). As pigs grow 
towards market weight, they require more energy to maintain 
basic biological processes and consequently become less efficient
at converting feed into body weight gain (Patience et al., 2015). 
This is particularly important in the heavy pig production systems, 
where slaughter weight significantly exceeds that of standard
commercial pigs, which, in contrast, are referred to as light carcass
production systems (Bosi and Russo, 2004). 

In pig farming, one of the most traditional ways to estimate feed 
efficiency is to calculate the Feed Conversion Ratio (FCR), which 
measures how effectively pigs convert feed into body mass by a
mathematical relationship between feed intake and weight gain
(Patience et al., 2015). This trait shows a moderate heritability
(Cai et al., 2008; Gilbert et al., 2007; Homma et al., 2021; Kavlak
and Uimari, 2019) and, in some cases, it is still the only trait 
included to target feed efficiency in breeding programmes. How-
ever, relying only on FCR may have some limitations, as it only cap-
tures the amount of feed required per unit of body weight gain, but
it does not account for factors such as differences in body compo-
sition, metabolic efficiency, or energy expenditure for maintenance
versus growth (Gilbert et al., 2007). Additionally, FCR is sensitive to 
variations in growth rate, making it challenging to determine 
whether changes are due to actual metabolic efficiency or simply
accelerated growth (Patience et al., 2015). In heavy pig production 
systems that are linked to Protected Designation of Origin (PDO) 
dry−cured hams, pigs are required to reach a live weight of
∼170 kg and a minimum age of 9 months, to have the maturity
needed for a high-quality curing process (Disciplinare di 
produzione della Denominazione di Origine Protetta Prosciutto di
Parma, 2023). In this system, growth rate is assessed through the 
average daily gain (ADG), which is calculated by dividing the
change in body weight during the elapsed period (usually mea-
sured in pounds or kg/day) (Camp Montoro et al., 2020). Despite 
being negatively correlated, FCR and ADG exhibit distinct genetic
backgrounds (Fu et al., 2020; Keel et al., 2020; Silva et al., 2019). 
This highlights the potential for developing selection strategies to 
improve FCR while controlling ADG and ensuring compliance with
the PDO dry−cured ham regulations.

Exploring biomarkers to dissect FCR and ADG may be a valuable 
approach to provide specific indicators of the distinct biological 
processes that influence these traits. Biomarkers are measurable 
molecules that are associated with physiological states or
responses and may provide insights into the characterisation of
the molecular and biological pathways regulating each final trait
(e.g. de Lima et al., 2020; Grubbs et al., 2016; Messad et al.,
2021). Among those, metabolomics, an expanding field, has 
become a promising tool for a more precise characterisation of ani-
mal metabolism. By analysing a wide range of small molecules pre-
sent in biofluids or tissues, metabolomics can identify biomarkers
that help unravel the biological complexity of various phenomena
2

across species, including production traits in livestock (Fontanesi, 
2016; Goldansaz et al., 2017; Hao et al., 2021; Imaz et al., 2022;
Li et al., 2022). Recent technological advancements in metabolomic 
profiling now offer several scalable approaches to characterise
metabolites, including targeted and untargeted approaches
(Gowda and Djukovic, 2014; Dudzik et al., 2018; Gertsman and
Barshop, 2018). 

In pigs, metabolomics has been used on several biofluids and 
tissues to characterise breed differentiation, to assess the meta-
bolic impact of pig development, health, feeding regimes,
responses to stress, and to explore the influence of genetic variabil-
ity on metabolite profiles (e.g. Bovo et al., 2015, 2016, 2023, 2025b,
2025c; Dervishi et al., 2021, 2023; Luise et al., 2020; Metzler-Zebeli
et al., 2023; Picone et al., 2018; Ruggeri et al., 2025). A limited 
number of metabolomics studies in plasma or faeces have already 
provided a first picture in crossbreed or Landrace and Duroc pure-
bred, highlighting candidate biomarkers associated with feed effi-
ciency and/or growth performance (Carmelo et al., 2020; Wu
et al., 2021; Ye et al., 2021). However, the limited number of stud-
ies, along with variations in sample size, diets, breed, breeding sys-
tems and tissues analysed, means that more evidence is needed to 
achieve a reliable understanding of these traits. Moreover, there 
have been no studies specifically targeting Italian Large White pigs 
raised in heavy pig production systems for PDO ham production. 
Since these traits are genetically distinct yet physiologically inter-
connected, there is a need to clarify the degree of their intercon-
nection at the metabolic level. In this study, we used untargeted
metabolomics to identify plasma metabolites that could charac-
terise feed efficiency and growth rate in Italian Large White heavy
pigs. Our objectives were to compare metabolite abundances
between pigs with high and low FCR, as well as between those with
high and low ADG, and to describe metabolic pathways and candi-
date biomarkers that could enhance our understanding of the bio-
logical processes involved in feed efficiency and growth in pigs.

Material and methods

Animals and blood samples

All animals involved in this study were maintained in compli-
ance with both Italian and European legislation governing pig pro-
duction, and all procedures outlined here adhered to Italian and 
European Union regulations on animal care and slaughter. No 
experimental manipulation was performed by the researchers on 
live animals. The animals were slaughtered at a commercial abat-
toir, following standard protocols. The fasting of animals was not
performed specifically for this study, but as part of routine pres-
laughter practices. All samples were collected postmortem from
animals slaughtered in a commercial facility for meat production
as a routine procedure, following standard procedures.

The overall structure of the experimental design is summarised
in Fig. 1. A total of 672 Italian Large White pigs were included in 
the study, consisting of 458 females and 214 castrated males. 
The pigs were part of a sib-test programme, based on triplets of 
pigs from the same litter (two females and one castrated male), 
that underwent individual performance testing at the Central Sta-
tion of the National Pig Breeders Association (ANAS). The test 
began at 100 days (approximately 30 kg) and ended at about 
155 ± 5 kg live weight. During this period, pigs were housed indi-
vidually in pens with a solid floor, one-third of which was slatted.
Dry pelleted feed was provided via an automatic feeding system.
The system distributes the predetermined individual feed ration
twice a day into a hopper placed in each pen. The pig, by pushing
a deflector with its snout, causes the feed to drop into the trough
below. The pigs were fed and managed under identical conditions,
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Fig. 1. Schematic representation of the overall experimental design and analytical pipeline for Italian Large White pigs. Abbreviations: FCR: Feed Conversion Ratio; ADG: 
Average Daily Gain; MWU: Mann-Whitney U test; D%: Relative percentage difference; AUC: Area under the curve; PCA: Principal Component Analyses; RF: Random Forest;
OOB: Out-Of-Bag; MDG: Mean Decrease Gini; CV PRED: Cross Validation Prediction.
and the feeding level was quasi ad libitum. Diet is provided in
Table S1. The feed distribution system records the individual daily 
amount distributed. The centre’s staff collects and weighs any 
uneaten feed from each hopper/pen every 2 weeks. The difference 
between the distributed feed and the feed residue is assumed to be 
the individua lly consumed quantity. ADG was calculated as the
regression coefficient of individual pig weights recorded every
2 weeks (9 weight measurements per individual during the trial).
FCR was computed as the ratio between the average daily feed
3

intake from 100 days to the end of the trial and the average daily 
gain over the same period. At the end of the test, when the animals 
reached 155 ± 5 kg live weight, they underwent a fasting period of 
∼12 h, were transported to a commercial abattoir, and slaughtered
following electrical stunning. Slaughter occurred on 23 different
days, with 17 to 37 animals collected each day. The procedures
took place in the morning at around 0800 h. Blood samples were
collected from the draining carotid artery into EDTA-containing
tubes immediately after exsanguination. Each tube was inverted
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8–10 times before being centrifuged within 2 h at 2 420 × g for 
10 min at 4 °C to isolate the plasma, which was then stored in mul-
tiple aliquots (Bovo et al., 2016).

Feed conversion ratio and average daily gain estimates

For both FCR and ADG, random residuals (RRs) were calculated 
using a general linear model including fixed effects for sex, batch,
date of slaughtering, age at slaughtering and inbreeding coefficient
(Bertolini et al., 2018; Fontanesi et al., 2010). Spearman’s correla-
tion between the RRs of the two traits was calculated using the
cor function in R v.4.2.3.3 (R Core Team, 2022). Two distinct data-
sets, FCR and ADG, each containing 200 samples with extreme and 
divergent values for the trait considered (100 with positive values 
and 100 with negative values, from here on referred to as high and 
low groups, respectively), were selected for subsequent analyses. 
The average RR values for the FCR dataset were 0.37 (± 0.12) for
the high FCR group and −0.34 (± 0.09) for the low FCR group, while
the average RRs for the high ADG group were 88.56 (± 22.09) and
−104.33 (±3 4.14) for the low ADG group. The two extreme data-
sets were balanced in terms of male:female ratio and slaughter
dates.

Metabolomic profiling of plasma samples

For the animals in the two extreme datasets, untargeted meta-
bolomics profiling of plasma samples was conducted by Metabo-
lon, Inc. (Durham, North Carolina, United States) using the HD4 
metabolomics platform. Metabolite extraction was performed with 
a methanol-based procedure to eliminate proteins and isolate 
metabolites. The obtained extracts were analysed using ultra-
performance liquid chromatography-tandem mass spectrometry 
with multiple techniques: reverse-phase chromatography with 
positive ion mode electrospray ionisation, reverse-phase chro-
matography with negative ion mode electrospray ionisation, and 
hydrophilic interaction liquid chromatography with negative ion 
mode electrospray ionisation. Samples were processed in four sep-
arate batches, each containing pooled plasma samples for quality
control. Data extraction, peak identification, and quality control
processing were carried out using Metabolon’s proprietary hard-
ware and software. For each metabolite, raw peak areas were nor-
malised to the median raw peak area of the quality control
samples. Metabolite annotations, including chemical names, data-
base identifiers, and associated biological pathways, were provided
by Metabolon.

Data quality control, imputatio n and cleaning

Data were processed following the methodology outlined in
(Bovo et al., 2025a,b). In summary, data filtering was carried out 
as follows: (i) outlier metabolites were defined as those deviating 
by more than five times the interquartile range above or below 
the median of the metabolite values across all samples; (ii) these 
outlier values were removed from the dataset and recorded as
missing data; (iii) metabolites with more than 25% of missing val-
ues were excluded from the dataset; and (iv) samples with over
30% missing values. Missing values were imputed within each
dataset (and extreme group) by adapting the method described
by Faquih et al., 2020, which employed the Multivariate Imputa-
tion by Chained Equations (MICE) approach (Azur et al., 2011;
van Buuren, 2018). MICE uses a predictor matrix to determine 
which columns (i.e. metabolites) will be used to impute missing 
values in each column. For each metabolite with missing values, 
the ten metabolites with the highest Pearson correlation coeffi-
cient, along with sex and sampling date, were selected as predic-
tors. Only metabolites of endogenous origin, as defined by
4

Metabolon, were used as predictors. As recommended by Faquih 
et al. (2020), Predictive Mean Matching was used as the imputation 
algorithm, generating five datasets, as advised by the authors of 
MICE. To account for the random nature of the imputation process, 
the data were imputed five times, each with a different random 
state seed. This resulted in a total of 25 runs of imputation for each
dataset (and extreme group). Extreme groups (high and low) were
then merged within a random state seed and imputation cycle, and
confounding factors were removed by regressing metabolite abun-
dances on the sex and sampling date covariates, as previously
described by Bovo et al. (2015, 2025a,b,c). The residuals were then 
used for further statistical analyses. All analyses were performed
using R v.4.2.3 (R Core Team, 2022) and Python v3.11.7.

Identification of discriminant metabolites between extreme groups

For each dataset, the identification of metabolites discriminat-
ing between extreme groups of each trait (i.e. high FCR vs low 
FCR and high ADG vs low ADG) was carried out with the Boruta
machine learning algorithm for feature selection (Kursa et al.,
2010). Boruta is an all-relevant feature selection method imple-
mented as a wrapper around the Random Forest classification algo-
rithm and has been shown to be more robust and less impacted by
the random component when compared to other algorithms for
the analysis of untargeted metabolomics (Bovo et al., 2025b). The 
Boruta algorithm can be briefly summarised as the application of 
a series of Random Forest models. For each feature, i.e. metabolite, 
‘‘shadow” features, i.e. random copies of the original data, are cre-
ated; the original data are then compared with these shadow fea-
tures, so as to evaluate whether the model performance is better 
when using the original data compared to the synthetic shadow 
features. After this comparison, features can be labelled as either 
‘‘Confirmed”, ‘‘Rejected” or ‘‘Tentative”, depending on whether 
they significantly outperform the overshadow features. For this 
study, the analysis was implemented in Python v3.11.7, with the 
BORUTA_py and scikit_learn packages. Default parameters were 
used, with the exception ofmax_iter, which indicates the maxi-
mum number of iterations, for which the value was increased to 
1 000 from the default value of 100, and alpha, which was reduced 
from 0.05 to a more stringent value of 0.01 for more robust statis-
tics. This feature selection procedure was applied to each of the 25 
datasets of residuals obtained from the missing value imputation 
and subsequent linear model. Each feature selection run was per-
formed five times on each of the 25 datasets, with five unique ran-
dom seeds, in order to take into account the random component of 
the Boruta algorithm. This resulted in a total of 125 runs of feature 
selection. We then applied a 10-fold cross-validation procedure
(10CV) for evaluating the stability of each selected metabolite,
and to confirm the reliability, quality and effectiveness of selection.
To do so, we randomly split each of the 25 datasets into ten equal
parts, making sure that each split dataset contained a balanced
number of samples per group. This way, by rotating the dataset,
removing one of the split datasets per iteration, we obtained a total
of 250 CV datasets, each 9/10ths of the original size. The same Bor-
uta analysis was applied to each of these datasets, again with five
unique random seeds. Therefore, we tested the discriminative
power of each metabolite an additional 1 250 times, again consid-
ering the random component nested in both missing value imputa-
tion and feature selection. For both datasets (FCR and ADG),
discriminant metabolites were then categorised into three groups
(subsets) based on their reliability of selection. (1) robust: the sub-
set of metabolites that were labelled as ‘‘Confirmed” in 125 out of
125 Boruta runs (corresponding to 100% of runs) and also labelled
as ‘‘Confirmed” in the 10CV procedure for at least 1 000 out of
1 250 runs. (2) consistent: the subset of metabolites that were clas-
sified as ‘‘Confirmed” in all of the feature selection runs (125 out of
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125, i.e. 100%) without considering the 10CV procedure. (3) per-
missive: the subset of metabolites that were classified as ‘‘Con-
firmed” in at least 100 out of 125 feature selection runs (i.e. 80%
of the runs) without considering the 10CV procedure.

Analyses of the discriminant metabolites

To evaluate the discriminatory power of the chosen metabo-
lites, additional univariate and multivariate analyses were carried 
out. These analyses were conducted separately within each dataset 
for their specific discriminati ve metabolites and then applied and
cross-tested to the other dataset. Specifically, metabolites found
in the FCR dataset were examined in the ADG dataset and vice
versa (Fig. 1). 

The following univariate analyses were performed for each pre-
viously identified metabolite within its corresponding dataset, as
well as when cross-applied to the alternate dataset:

1. Relative percentage difference in metabolite concentration [D%,
(Bovo et al., 2016): the value was calculated and expressed as 

where and are the average metabolite 

abundance of the ith metabolite in high and low extreme
groups, respectively.

D i
x
H
i x

L
i

x
H
i

100, x
H

i x
L

i

2. Mann–Whitney U test (MWU): The values were obtained with 
the function mannwhitneyu of scipy (Virtanen et al., 2020)  in
Python v3.11.7. For this analysis, thresholds of significance 
were set to P < 0.05 and P < 0.005 for significant and highly sig-
nificant results, respectively (Benjamin et al., 2018). 

3. Area Under the Curve (AUC): this metric summarises the Recei-
ver Operating Characteristic (ROC) curve, which is typically 
used to assess the performance of a binary classification model 
with varying classification thresholds. Higher AUC values indi-
cate better classification performance. ROC and AUC calcula-
tions were performed using the Python v3.11.7 roc_curve and
auc functions from the scikit_learn package (Pedregosa et al.,
2011) 

Subsequently, multivariate analyses were performed on the 
various combinations of metabolites and datasets:

(1) Principal Component Analyses (PCAs): an approach used for 
linear dimensionality reduction. It reduces the number of 
dimensions in a dataset to a smaller set of principal compo-
nents while preserving most of the original information. PCA 
is valuable for evaluating clustering and separation in a
dataset, both qualitatively and quantitatively. To conduct
PCA, we used the Python v3.11.7 scikit-learn’s functions
StandardScaler for scaling and centring the data, and PCA
for computing the principal components (Pedregosa et al.,
2011). Initially, PCA was applied to the entire metabolite 
dataset for both FCR and ADG samples, followed by various 
metabolite subsets. The MWU was also calculated using
the first two Principal Components (PCs) as groups, follow-
ing the same method described in the univariate analyses.

(2) Random Forest: Random: this analysis was conducted using 
the RandomForestClassifier function of the scikit_learn
package (Pedregosa et al., 2011). Each set of metabolites 
was used as input to train a Random Forest Classifier. The 
trained model was then evaluated based on its Out-Of-Bag 
(OOB) score and the importance of each feature (i.e. metabo-
lite) in classification was measured by the Mean Decrease in
Impurity, also known as the Gini index. Random forest clas-
sifiers are trained using bootstrap aggregation, where each
tree is fitted from a bootstrap sample of observations, and
the remaining observations are used for prediction. The
5

OOB error is calculated as the mean error of predictions dur-
ing the training process, with the OOB score being computed 
as 1-(OOB error). A high OOB score indicates that during the
training process, the model is correctly assigning most OOB
samples to the extreme group, suggesting a good classifica-
tion based on the metabolite set used.

Functional analyses 

Annotations for super- and sub-pathways as defined by Meta-
bolon were initially used to functionally evaluate the selected 
metabolites. Functional links were then studied through the con-
struction of metabolite networks and pathway analyses. Networks 
were built within each dataset (FCR or ADG) based on selected
metabolites (permissive subsets) and by computing Spearman’s
correlation coefficients (q). Similarly to our previous work (Bovo 
et al., 2025a,b,c), to include all animals without biasing the corre-
lation coefficients, residuals of metabolites were computed, includ-
ing also the extreme group information (i.e. high or low) as a fixed 
effect (in addition to sex and sampling day) in the regression model
used to clean the data. Edges of the network were considered infor-
mative when presenting q ≥ 0.5 (medium–high correlation).

Pathway analyses were conducted using MetaboAnalyst v6.0
(Pang et al., 2022), with the Human Metabolome Database identi-
fiers of selected metabolites as input. Metabolite sets were sourced 
from RaMP-DB, a comprehensive database containing 3 694
metabolites and lipid pathways (Zhang et al., 2018). Pathways con-
taining at least two metabolites from the input set and showing an
FDR-corrected P < 0.05 were considered statistically significant.
Results 

Overview of the two extreme and divergent datasets

The correlation between RRs of ADG and FCR was −0.69 
(P < 0.05). This moderate negative correlation can be seen in the 
selection of samples that displayed extreme and divergent values 
for ADG and FCR. Specifically, 52% of the samples with contrasting 
traits (i.e. low FCR and high ADG, or vice versa) overlapped, while
none of the samples with corresponding traits (i.e. both high and
both low) overlapped. The untargeted metabolomics assay allowed
the measurement of 722 metabolites (Table S2), of which 594 
(83%) were of endogenous origin, while 60 (8%) were of xenobiotic 
origin; another 68 metabolites (9%) could not be identified and will 
be referred to as unnamed metabolites. The endogenous metabo-
lites were grouped into eight super-pathways, most notably lipids 
(∼half of the total) and amino acids (∼one-third), with smaller pro-
portions of nucleotides, peptides, carbohydrates, cofactors/vita-
mins, energy-related compounds, and partially characterised
molecules. After excluding 56 metabolites with >25% missing val-
ues and removing xenobiotic compounds, 606 metabolites
remained for analysis.

Discriminant metabolites for feed conversion ratio and average daily
gain

The summary of the overall performance of the metabolites 
from the Boruta analyses for both traits is reported in Supplemen-
tary Table S3. As shown in Table 1, the analysis identified 11 dis-
criminant metabolites for FCR that constitute the ‘‘permissive” 
subset (i.e., selected in at least 100 out of 125 feature selection 
runs, without considering the 10CV procedure). Based on their reli-
ability of selection, nine metabolites fall into the ‘‘consistent” sub-
set (i.e., selected in all 125 feature selection runs, without
considering the 10CV procedure) and eight metabolites fall into
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Table 1 
ist of discriminant metabolites obtained with the Boruta analysis using the Feed Conversion Ratio and the Average Daily Gain datasets for Italian Large White pigs. Statistics are reported for both test (features selected and tested within
he dataset) and cross-test (features selected in one dataset and tested in the other dataset) analyses.
L
t

Metabolite FCR dataset ADG dat aset

Metabolite name Super 
pathway 

Sub pathway Mean (±SD) high Mean (±SD)
low

D% MWU test
P

AUC Mean (±SD)
high

Mean (±SD)
low

D% MWU test
P

AUC 

FCR-derived 

Methionine sulfoneP,C,R Amino Acid Methionine, Cysteine, SAM 
and Taurine Metabolism

1.04 
(0.22) 

1.22 
(0.26) 

−17.44 7.46 × 10−7 0.70 1.18 (0.25) 1.11 (0.27) 6.04 0.33 0.54 

Ceramide (d18:1/17:0, d17:1/ 
18:0) C,R 

P,C,R 

Lipid Ceramides 0.99 
(0.3) 

1.13 
(0.34) 

−14.98 2.71 × 10−3 0.62 

Phenylacetylglycine Peptide Acetylated Peptides 0.8 
(0.27) 

0.98 
(0.27) 

−21.71 3.72 × 10−6 0.69 1.00 (0.28) 

4.78 × 10−4 0.64 1.13 (0.32) 1.02 (0.35) 10.20

2.11 × 10 0.65
0.03 0.59

0.89 (0.29) 11.33 0.01 0.61 

O-AdipoylcarnitineP,C,R Lipid Fatty Acid Metabolism (Acyl
Carnitine, Dicarboxylate)

1.16 
(0.53) 

0.85 
(0.31) 

26.19 3.51 × 10−5 0.67 0.83 (0.42) 1.03 (0.46) –23.99 2.66 × 10−3 0.62 

X-16580P,C,R Unnamed Unnamed 0.99 
(0.69) 

0.62 
(0.39) 

37.85 1.78 × 10−4 0.65 0.65 (0.48) 0.83 (0.53) −27.28 0.10 0.57 

P-cresol glucuron ideP,C,R Amino Acid Tyrosine Metabolism 0.84 
(0.35) 

1.07 
(0.31) 

−26.66 1.71 × 10−6 0.70 1.09 (0.32) 0.93 (0.38) 14.64 3.46 × 10−3 0.62 

X-23890P,C,R Unnamed Unnamed 1.03 
(0.64) 

1.36 
(0.54) 

−32.25 4.66 × 10−5 0.67 1.27 (0.53) 1.13 (0.66) 10.82 0.06 0.58 

ProlylhydroxyprolineP,C,R Amino Acid Urea cycle; Arginine and
Proline Metabolism

0.88 
(0.24) 

1.03 
(0.23) 

−16.19 1.21 × 10−5 0.68 1.02 (0.23) 0.98 (0.26) 4.55 0.35 0.54 

L-CarnitineP,C,R Lipid Carnitine Metabolism 0.9 
(0.18) 

0.79 
(0.17) 

12.81 8.88 × 10−7 0.70 0.78 (0.15) 0.85 (0.17) −8.88 0.03 0.59 

IsoleucylhydroxyprolineP Peptide Dipeptide Derivative 0.89 
(0.29) 

1.04 
(0.30) 

−16.81 2.05 × 10−4 0.65 1.04 (0.27) 0.99 (0.32) 4.88 0.28 0.54 

FCR- and ADG-derived 

X-17354P Unnamed Unnamed 1.07 (0.59) 1.65 
(0.97) 

−54.71 2.27 × 10−6 0.69 1.68 (0.92) 1.20 (0.71) 28.61 2.48 × 10−4 0.65 

ADG-derived 

6beta-hydroxylithocholate P,R Lipid Secondary Bile Acid
Metabolism

0.97 (0.17) 0.95 (0.18) 1.31 0.60 0.48 0.93 (0.19) 1.02 (0.21) −9.93 1.64 × 10−5 0.68 

N6-methyllysine P,R 

P,R 
Amino Acid Lysine Metabolism 0.70 (0.40) 0.69 (0.43) 1.21 0.46 0.53 0.67 (0.50) 0.86 (0.57) −28.84 8.56 × 10−4 

−4
0.64 

X-12216 
P 

Unnamed Unnamed 0.87 (0.25) 0.88 (0.28) −0.75 0.81 
− 3

0.51 0.81 (0.26) 0.93 (0.29) −15.79 5.58 × 10
−4

0.64 
Trimethylamine N-oxide 

P 
Lipid Phospholipid Metabolism 0.75 (0.61) 0.86 (0.56) −15.22 4.97 × 10 0.62 0.84 (0.59) 0.71 (0.60) 15.48 1.37 × 10

−4
0.66 

2-Hydroxydecanoate 
P 

Lipid Fatty Acid, Monohydroxy 0.95 (0.78) 1.08 (0.8) −14.16 0.06 0.58 1.15 (0.72) 0.86 (0.60) 24.85 
1-Oleoyl-GPE (18:1) Lipid Lysophospholipid 1.01 (0.51) 0.95 (0.54) 5.35 0.83 0.51 0.99 

(0.60) 
0.86 (0.41) 13.47 

Vanillactate P Amino Acid Tyrosine Metabolism 0.69 (0.18) 0.64 (0.19) 8.19 0.07 0.57 0.62 
(0.19) 

0.71 (0.18) −14.74 4.04 × 10−2 0.62 

Abbreviations: FCR: Feed Conversion Ratio; ADG: Average Daily Gain; D%: delta percentages; MWU test P: Mann-Whitney U test P; AUC: Area Under the Curve; SAM: S-adenosylmethionine.
R Metabolites belonging to the ‘‘robust” set.
C Metabolites belonging to the ‘‘consistent” set.
P Metabolites belonging to the ‘‘permissive” set.
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the ‘‘robust” subset (i.e., selected in all feature selection runs and in 
at least 1 000 out of 1 250 10CV iterations). Excluding unnamed 
metabolites (n = 3) for which biological annotation is not available, 
the remaining eight metabolites belong to three known super-
pathways, i.e. amino acids (n = 3), lipids (n = 3) and peptides 
(n = 2). For ADG, eight metabolites were identified: three fell in
the ‘‘robust” subset, and five fell in the ‘‘permissive” or ‘‘consistent”
subset only. These metabolites are respectively two amino acids,
four lipids, and two unnamed. Among all identified metabolites,
only one metabolite (unnamed: X-17354) overlapped between
the ADG and FCR datasets.

The discriminative power of the 11 metabolites identified by 
Boruta in the FCR dataset was confirmed by the MWU test, as all 
of them presented highly significant P-values (P < 0.005). Most of 
these highly significant metabolites showed negative delta per-
centage values (D%), indicating lower concentrations in the low 
FCR group when compared to the high FCR group, with moderate 
to large values ranging from −14.98% (ceramide) to −54.71% in 
the unnamed metabolite selected in both FCR and ADG datasets.
On the other hand, two lipids (L-carnitine and O-
adipoylcarnitine) and one unnamed metabolite showed a moder-
ate to large positive D% value (from 12.81 to 37.85%). The com-
puted AUC values further confirmed the discriminative power of
the metabolites, with medium to high values ranging from 0.64
to 0.70, with no distinction among the robust, consistent and per-
missive classes.

The eight metabolites obtained from the Boruta analysis on the 
ADG dataset confirmed their discriminative power in the same 
dataset, with all being highly significant (n = 6; P < 0.005) or signif-
icant (n = 2; P < 0.05) in the MWU test. The delta percentages (D%) 
for ADG metabolites reveal distinct patterns of change between 
high and low ADG groups. A total of four metabolites (two amino 
acids, one lipid and one unnamed) show a moderate to high
increase from high to low ADG pigs, as indicated by the D% values
(e.g. N6-methyllysine with D% = −28.84% and X-12216 with D% =
−15.79%). Conversely, some metabolites exhibit the opposite trend,
decreasing from high to low ADG groups (three lipid and one
unnamed) (e.g. 1-oleoyl-GPE (18:1) with D% = 13.47 and 2-
Fig. 2. Correlation network of FCR-selected metabolites for Italian Large White pigs; each
value >=0.5. Metabolite names are shown in the numeric legend, and correlations are sh
coloured by the mean difference in abundance between high FCR and low FCR groups. A
groups. FCR: Feed Conversion Ratio.

7

hydroxydecanoate with D% = 24.85%). The AUC values showed 
slightly lower levels of discriminatory power compared to the
metabolites detected in the FCR dataset, ranging from 0.59 to 0.68.

In the cross-test analysis, after computing metabolite-level 
statistics in the FCR dataset for the ADG-derived metabolites, only 
trimethylamine N-oxide showed a highly significant P−value, with 
a moderate negative D%  (−15.22%) and a moderate AUC (0.62). As 
for the FCR-derived metabolites tested against the ADG dataset,
five of the metabolites identified in the FCR dataset exclusively
(three lipids, one amino acid and one peptide) were also significant
or highly significant, showing opposite delta trend.

Correlation network and functional analysis

Discriminant metabolites from the permissive sets were studied 
in the context of their relationships through the generation of cor-
relation networks. Edges between nodes, indicating a functional
link between metabolites, were drawn if correlation was moderate
to high (|q| > 0.5) (Fig. 2). The network was obtained only for the 
FCR dataset, as all ADG-derived metabolites presented poor corre-
lation coefficients (|q| < 0.5). In the FCR dataset, seven out of the 11 
metabolites formed three clusters in total. The first cluster showed 
a moderate correlation (q = 0.58) between O-adipoylcarnitine and 
the X-16580 unnamed metabolite. The second cluster exhibited a 
very high correlation (q = 0.94) between prolylhydroxyproline 
and isoleucylhydroxyproline. A larger cluster of three metabolites 
consisted of a lipid (phenylacetylglycine) and an amino acid (p-
cresol glucuronide) that were highly correlated (q = 0.93), both
presenting moderate correlations (q = 0.53 and q = 0.52) with
the unnamed metabolite X-17354. The clusters were composed
of metabolites having the same D% trend (i.e. either all more abun-
dant in the high FCR group compared to the low FCR group or vice
versa) (Fig. 3A), while no clustering based on the metabolite sub-
sets (i.e. robust, consistent and permissive) was observed (Fig. 3B). 

To better evaluate the functional link among the selected 
metabolites, over-representation in biological pathways was car-
ried out considering both FCR- or ADG-derived metabolite sets,
either separately or jointly together. The MetaboAnalyst platform
 node represents a metabolite and each edge a Spearman correlation with absolute 
own on each edge. (A) Metabolites coloured by the super pathway. (B) Metabolites
bbreviations: Mean D%: Mean difference in abundance between high and low FCR
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Fig. 3. Principal Component Analyses showing the Principal Components (PC) 1 and 2 of the samples under investigation in Italian Large White pigs, considering both the 
complete metabolite sets and the discriminant metabolites classified as permissive. For each subfigure, the explained variance of each component is reported in percentage 
alongside the axis label. In the FCR dataset, the PCA was conducted using (A) whole metabolite profile; (B) discriminant metabolites identified in the FCR analysis (FCR-
derived metabolites); (C) discriminant metabolites identified in the ADG analysis (ADG-derived metabolites; cross-test analysis). In the ADG dataset, the PCA was conducted
using (D) whole metabolite profile; (E) discriminant metabolites identified in the ADG analysis (ADG-derived metabolites); (F) discriminant metabolites identified in the FCR
analysis (FCR-derived metabolites; cross-test analysis). Abbreviations: FCR: Feed Conversion Ratio; ADG: Average Daily Gain.
was able to map all the metabolites except for ceramide 
(d18:1/17:0, d17:1/18:0). No significant results were obtained
when considering FDR-corrected P-values.

Principal component analysis of selected metabolites

The ability of all selected metabolites to collectively discrimi-
nate between high and low ADG and FCR groups is illustrated in
Fig. 3. For FCR, although the overall metabolite profile (Fig. 3A) 
did not display group stratification, the metabolite set selected
within the FCR dataset (Fig. 3B) exhibited a clustering pattern. 
Clustering was absent when using, in a cross-test analysis, the
ADG-derived metabolite set (Fig. 3C). A similar but peculiar pattern 
was observed in the ADG dataset. In this case, the high and low
groups did not show clustering when using all metabolites
8

(Fig. 3D), but, interestingly, displayed clearer clustering with the 
metabolites selected from the FCR analysis (Fig. 3E), and showed 
a less pronounced level of clustering when using the metabolites
selected for ADG (Fig. 3F). 

MWU tests were then performed on the values of the PCs 
obtained from the PCA described above for both ADG and FCR data-
sets and analysed together with the Explained Variance (EV) of the
PCs. The EV values and MWU test P-values for the PCs across differ-
ent metabolite sets and traits are summarised in Table 2. For both 
FCR and ADG, as expected, the variance explained by PC1 and PC2 
was higher for subsets of discriminant metabolites when compared 
to the whole metabolite profile. For FCR, the PCs in the ‘‘robust” 
subset of metabolites retrieved from the FCR analysis accounted
for 33.68% (PC1) and 22.65% (PC2) of the explained variance, with
significant P for PC1 (P < 1.95 × 10–12) and PC2 (P = 0.02). Similarly,

move_t0010
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Table 2 
Results of the Principal Component Analyses for Italian Large White Pigs. Explained variance and Mann-Whitney U test are provided considering the whole metabolite profile and
each metabolite subset (based on reliability of selection) for both Feed Conversion Ratio and Average Daily Gain datasets.

FCR dataset ADG dataset 

PC1 PC2 PC1 PC2 

Metabolite set EV (%) MWU test P EV (%) MWU test P EV 
(%) 

MWU test P EV 
(%) 

MWU test P

Whole metabolite profile 15.25 0.53 7.94 0.25 16.03 0.42 7.61 0.35 
FCR robust 33.68 1.95 × 10−12 22.65 0.02 28.90 5.91 × 10−03 22.83 2.60 × 10 −03

FCR consistent 31.42 1.41 × 10−13 20.43 0.05 26.44 1.08 × 10−03 20.78 8.59 × 10 −03

FCR permissive 32.11 2.44 × 10−12 18.71 2.23 × 10−03 26.89 1.78 × 10−03 19.63 4.82 × 10 −04

ADG robust 37.42 0.03 33.23 0.14 40.26 6.99 × 10−08 33.64 3.49 × 10 −04

ADG permissive 23.65 0.66 17.12 3.70 × 10−05 25.98 4.49 × 10−07 16.41 5.10 × 10 −07

Abbreviations: PC: Principal Component; FCR: Feed Conversion Ratio; ADG: Average Daily Gain; EV: Explained Variance; MWU test P: Mann-Whitney U test P.
the ‘‘consistent” and ‘‘permissive” subsets showed substantial EV 
for PC1 (31.42 and 32.11%, respectively) and significant MWU test 
results (P < 1.5 × 10–13 for PC1 for both subsets). For ADG, PC1 
explained 40.26% of the variance in the ‘‘robust” subset, with a 
highly significant MWU P-value (P = 6.99 × 10–8 ). Explained vari-
ance for PC2 was also notable for this subset (33.64%, P = 3.50 × 1 
0–4 ). The ‘‘permissive” subset had slightly lower EV (25.98% for PC1 
and 16.41% for PC2) but retained statistical significance (P < 5.20 
× 10–7 for both PCs). In the cross-test analysis, the PCA of metabo-
lite subsets identified for ADG and tested against the FCR dataset,
and vice versa, revealed significant patterns. For ADG-derived
metabolites in the FCR dataset, the ‘‘robust” subset PCs explained
37.42% (PC1) and 33.23% (PC2) of the variance, with PC1 showing
a significant difference (P = 3.18 × 10–2). Similarly, the ‘‘permissive”
subset PCs explained 23.65% of the variance (PC1) with a non-
significant P-value. Conversely, when FCR-derived subsets were
tested against ADG, notable EV values were observed in the PCs
Fig. 4. Out Of Bag (OOB) scores for the different models trained with different metabolite
(B) FCR dataset with ADG-derived metabolites (cross-test analysis); (C) ADG dataset wit
metabolites. Abbreviations: FCR: Feed Conversion Ratio; ADG: Average Daily Gain.

9

of the ‘‘robust” subset (28.90% for PC1; P = 5.91 × 10–3 ) and ‘‘per-
missive” subset (26.89% for PC1; P = 1.80 × 10–3).

Random forest analyses

Fig. 4 summarises the OOB scores for the various models that 
were trained. Analysis of the mean decrease Gini scores for each 
model revealed minimal variability among metabolites, suggesting
a balanced contribution of each metabolite to the OOB value calcu-
lation (Supplementary Table S4). In the FCR sample set, when con-
sidering FCR-derived metabolites (Fig. 4A), the OOB value ranged 
from 0.67 (whole metabolite set) to 0.72 (permissive metabolite 
set). As expected, using ADG-derived metabolites in the FCR sam-
ple set led to lower OOB values (Fig. 4B). In the ADG sample set, 
FCR-derived metabolites generally underperformed compared to 
the whole metabolite set (OOB score = 0.67), with values around
0.56 (Fig. 4C). When considering the ADG-derived metabolites,
 subsets for Italian Large White pigs. (A) FCR dataset with FCR-derived metabolites; 
h FCR-derived metabolites (cross-test analysis); (D) ADG dataset with ADG-derived
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the OOB score was lower for the whole metabolite set (OOB 
score = 0.63) than when using the FCR-derived metabolite sets
(OOB score = 0.72) (Fig. 4D). 

Discussion 

In the heavy pig production system, typically associated with 
PDO products, it is crucial to optimise feed efficiency and growth
to achieve economic and environmental sustainability, while also
maintaining high product quality (Rocadembosch et al., 2016;
Soleimani and Gilbert, 2021). Inadequate feed efficiency in pigs 
can lead to increased production costs and heightened environ-
mental impact, as feed is needed for maintenance. At the same 
time, it is important to manage growth rate carefully to prevent
pigs from reaching the required slaughter weight before they have
reached the minimum age required for slaughter (Disciplinare di 
produzione della Denominazione di Origine Protetta Prosciutto di
Parma, 2023). This balancing act highlights the importance of 
understanding the complex relationship between feed efficiency 
and growth. While these two traits are partially related, they are
in fact different traits influenced by separate biological and meta-
bolic mechanisms (Arthur et al., 2009; Patience et al., 2015). In this 
study, we characterised the metabolomic plasma profiles in Italian 
Large White heavy pigs associated with feed efficiency (FCR) and 
growth (ADG), by analysing over 700 metabolites in an untargeted 
approach. We examined two separate cohorts of Italian Large 
White pigs that were extreme and divergent in terms of their
FCR and ADG traits, with a 52% overlap between the two groups
of animals. This overlap is a result of the moderate-to-high nega-
tive correlation observed between FCR and ADG in our datasets.

This extreme-phenotype approach is widely applied in biomar-
ker discovery studies as it maximises the biological contrast 
between groups, thereby increasing the power to detect metabolite
differences associated with the traits of interest (e.g. Liu et al.,
2021; Seyres et al., 2022; Zubiri-Gaitán et al., 2023). 

Despite the high correlation and overlap in pigs between the 
two datasets, distinct metabolite patterns were observed to dif-
ferentiate the two groups. Boruta analyses conducted on the 
datasets revealed only one common metabolite out of the 18 
detected. As an all-relevant feature selection algorithm, Boruta 
is designed to capture the full set of variables contributing to 
group differences, making it well−suited for our objective of
highlighting all metabolites associated with the observed pat-
terns rather than reducing them to a minimal predictive subset.
Moreover, Boruta can overcome limitations of other
approaches, such as LASSO, particularly with regard to multi-
collinearity (Sztepanacz and Houle, 2024). Among the remain-
ing detected metabolites, 10 were unique to FCR, and 7 were 
unique to ADG, while 1 was shared. When considered sepa-
rately, these metabolites exhibited medium−to−high AUC val-
ues and highly significant MWU P, confirming their ability to 
discriminate between extreme and divergent values. Individu-
ally, most metabolites selected in the FCR dataset still displayed 
significant discriminatory abilities between high and low ADG,
even if they were not selected in the Boruta analysis. The oppo-
site was not true. These results align with the biological back-
ground of these two traits. FCR is a composite measure that
considers feed intake relative to weight gain, encompassing
aspects of both growth and feed utilisation efficiency
(Patience et al., 2015). In contrast, ADG is a more narrowly 
defined trait that directly measures growth performance, with-
out considering feed utilisation. Therefore, metabolites associ-
ated with FCR may reflect processes that influence both feed 
metabolism and growth-related pathways, even if they were
not directly identified as the most important contributors to
ADG in Boruta feature selection.
10
As far as we know, none of the metabolites detected in this study 
have been mentioned in the previous works related to pig feed effi-
ciency and growth. However, the main classes of bile acid metabo-
lism and ceramides were detected by previous studies, aligning
with our own work (Carmelo et al., 2020; Wu et al., 2021 ; Ye et al.,
2021). These differences may be due to several factors, primarily 
the use of different breeds and genetics in the studies, leading to 
varying selection goals and metabolomic patterns (Bovo et al.,
2025a,b,c). In our study, L-carnitine and O-adipoylcarnitine were 
selected using the Boruta analysis in the FCR dataset. These two 
metabolites were found to be present at significantly higher concen-
trations in the high FCR group. Although they were not selected in 
the Boruta analysis for ADG, both carnitine and O-adipoylcarnitine 
exhibited significant opposite trends in the ADG dataset (as indicated 
by MWU P), with higher concentrations observed in the low ADG 
group, particularly for O-adipoylcarnitine. L-carnitine is a key mole-
cule in fatty acid metabolism, serving as a cofactor in mitochondrial 
fatty acid oxidation by transporting long-chain fatty acids across the
inner mitochondrial membrane. It is also involved in other functions
such as acyl moiety transport from peroxisomes, and regulation of
the intramitochondrial acyl-CoA/CoA ratio (reviewed in Eder, 2 009). 
Carnitine is mainly absorbed from the diet but can also be fo rmed
through biosynthesis (Vaz and Wanders, 2002). In livestock, this 
molecule can be used as an additive to improve the growth perfor-
mance of both monogastric and ruminant livestock species with con-
trasting results (Martín et al., 2022; Ringseis et al., 2018a, 2018b). In 
our study, higher levels in the plasma of the high FCR group suggest 
that inefficient animals may need to mobilise a higher level of lipids 
for oxidation to compensate for an elevated energy demand. Despite 
the lack of a direct correlation in our dataset, L-carnitine and O-
adipoylcarnitine belong to the same fatty acid metabolic pathway. 
In fact, O-adipoylcarnitine is an adipic acid ester of carnitine, which
transports acyl-groups (i.e. organic acids and fatty acids) from the
cytoplasm into the mitochondria so that they can be broken down
to produce energy (Indiveri et al., 2011; Jennings et al., 2023;
Schooneman et al., 2 013). L-carnitine and O-adipoylcarnitine may 
accumulate in plasma and urine in the case of fatty acid oxidation
disorders (Merritt et al., 2018). The elevated concentrations of these 
metabolites in the high FCR group suggest an accumulation of fatty 
acid intermediates. It can be hypothesised that pigs in the high FCR 
group have higher rates of fatty acid oxidation, leading to increased 
production of adipoylcarnitine as a byproduct. Animals with high 
FCR values typically have higher energy demands and lower feed effi-
ciency, consistent with their metabolic profile characterised by 
increased substrate turnover and incomplete oxidation. Animals with 
slower growthmay rely on less efficient andmore energ y-consuming
routes to meet their energy needs. The higher levels of both metabo-
lites, found in the low ADG group, further support this hypothesis.

In the FCR dataset, isoleucylhydroxyproline and prolylhydrox-
yproline, which showed a high correlation (q = 0.94) in our analy-
ses, are significantly higher in the low FCR group and not 
significant in the ADG dataset. Both isoleucylhydroxyproline and
prolylhydroxyproline are dipeptides derived from the breakdown
of collagen or collagen-like proteins, indicating a connection to
connective tissue turnover and remodelling (Asai et al., 2020). 
While no direct link with feed efficiency has been established 
yet, the increased abundance of these dipeptides in low FCR pigs 
may suggest higher rates of efficient protein turnover, potentially
enhancing tissue maintenance and repair without excessive meta-
bolic cost (Sarri et al., 2024). 

Another cluster of correlated metabolites in the FCR dataset 
included p-cresol glucuronide (a peptide), phenylacetylglycine 
(an amino acid) and one unclassified metabolite (X-16580). While 
phenylacetylglycine and p-cresol glucuronide showed significantly
higher abundance in the low FCR group, the unclassified metabo-
lite exhibited an opposite trend. In the ADG dataset, only pheny-
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lacetylglycine and p-cresol glucuronide displayed significant dif-
ferences, being more abundant in the high ADG group, while the 
unclassified X-16580 metabolite did not show significant differ-
ences. Phenylacetylglycine and p-cresol glucuronide are bioprod-
ucts of gut microbial metabolism of phenylalanine and tyrosine,
respectively, and have long been known to circulate in the blood
(Stachulski et al., 2023; Wikoff et al., 2009). While direct associa-
tions between phenylacetylglycine and p-cresol glucuronide with 
feed efficiency are not yet established, several studies have linked 
changes in gut microbiome with feed efficiency-related traits.
Changes in gut microbiota affect nutrient utilisation of the animal
and growth (Maltecca et al., 2020). The high correlation of the 
unnamed metabolite X-16580 may suggest its possible common 
origin (i.e. gut microbiota activity). It is interesting to observe that
this metabolite may target nutrient optimisation rather than
growth; however, further analyses will be needed to clarify its role.

As expected, and previously discussed, the seven metabolites 
retrieved from the ADG dataset did not show differences in the FCR 
dataset. Moreover, no high correlations have been detected among 
any of them. Among those metabolites, 6b-hydroxylithocholate, 
N6-methyllysine, X-12216, and vanillactate were more abundant in 
the low ADG group, while trimethylamine N-oxide, 2-
hydroxydecanoate, and 1-oleoyl-GPE (18:1) were higher in the high 
ADG group. 6b -hydroxylithocholate, a bile acid derivative, and
trimethylamine N-oxide, a product of choline metabolism, are both
primarily influenced by gut microbial activity. Vanillactate, a sec-
ondary metabolite of tyrosine metabolism, is also derived from
microbial fermentation (Ufnal et al., 2015; Wilson et al., 2019;
Winston and Theriot, 2020). With the current knowledge, it is not 
possible to determine the interplay of these compounds that can 
modify ADG performance in pigs or other mammals. However, it is 
known that specific gut microbial profiles are associated with 
enhanced weight gain in several livestock species, supporting our
observations from FCR-related metabolites regarding feed efficiency
(Fang et al., 2020; Quan et al., 2019; Wang et al., 2021). 

N6-methyllysine, 2-hydroxydecanoate, and 1-oleoyl-GPE 
(18:1), despite being involved in different metabolic pathways 
and still not well investigated in livestock, have all been shown
to have a role in influencing growth patterns and weight gain
(Axelrod et al., 2024; Olarini et al., 2022; Zhang et al., 2022). 2-
Hydroxydecanoate has also been associated with sexual different i-
ation in Italian Large White pigs (Bovo et al., 2025a). In our study, 
however, metabolite levels were corrected for sex, and the datasets 
were balanced by sex ratio, indicating that the detected metabo-
lites reflect efficiency status rather than sex effects.

Metabolites do not function in isolation; instead, they are inte-
gral components of biological systems, interconnected within com-
plex metabolic pathways that are not yet fully characterise d. In
this study, we expanded our analyses by statistically examining
metabolite clusters using PCA and Random Forest, two comple-
mentary approaches (Biau and Scornet, 2016; Jollife and Cadima,
2016). PCA was used to assess how Principal Components gener-
ated by the selected metabolites were able to discriminate 
between groups in the two datasets, while Random Forest was 
used to assess the power of classification of the metabolite clusters,
exploiting the ability of this approach to self-generate internal test
sets. Random Forest is considered one of the most stable machine
learning algorithms that does not require a separate testing set
(Breiman, 2001; Liaw and Wiener, 2002). These methods provided 
further assessment of the metabolites identified through Boruta 
analysis, confirming their relevance to the two targeted traits. In 
our study, metabolite sets corresponding to their respective data-
sets confirmed a higher predictive performance in their own data-
set, with both traits achieving the highest OOB score with their
respective permissive metabolite subsets. In the PCA approach,
some variability was detected among the different metabolite sub-
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sets which showed best clustering performances when utilising 
only the metabolites that belonged to the ‘‘robust” class, while 
for Random Forest, this difference was not detected. However, 
when metabolites were switched, results declined for both data-
sets in both approaches, confirming the higher specificity of the
selected biomarkers over the traits they were selected for.

Conclusions 

This study provides the first characterisation of metabolites 
linked to feed efficiency and growth-related traits in an Italian 
Large White heavy pig cohort, which is under selection to optimise 
PDO dry-cured ham production. The Boruta machine learning algo-
rithm allowed us to identify, from approximately 700 analysed 
metabolites, those most strongly associated with the two targeted 
traits: FCR and ADG. The metabolic profiles that emerged were 
linked to fatty acid oxidation, bile acid metabolism, collagen syn-
thesis, and microbiome activity. While some of the main activities 
were common to both traits, the metabolomic profile reflects 
unique patterns that characterise them. Specifically, these analyses 
clarify the role of FCR, which partially includes ADG (growth), but 
not vice versa. In fact, some metabolites linked to FCR were shown 
to discriminate ADG, but this was not observed in the other direc-
tion. The importance of these metabolites in characterising high− 
and low−performing pigs for these traits was also confirmed by 
PCA and random forest analyses. This highlights the importance
of considering these traits independently when identifying
biomarkers for breeding programmes or nutritional interventions.
It also provides candidate biomarkers to be integrated into breed-
ing programmes for the improvement of feed efficiency and
growth in Italian Large White pigs, thereby enhancing the sustain-
ability of the heavy pig breeding system. Although our untargeted
metabolomic approach offers valuable insights into metabolic sig-
natures associated with feed efficiency and growth, we acknowl-
edge that these complex traits are polygenic and multifactorial.
Integrating metabolomics with other omics layers, such as geno-
mics, transcriptomics, proteomics, and microbiomics, would be
essential future step to provide a deeper mechanistic understand-
ing and to validate the biomarkers across broader phenotypic spec-
tra. Future studies should also include pigs monitored over the
entire growth phase and cohorts representing intermediate pheno-
types to complete the metabolomic picture of these traits.
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